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A general problem in computational probability theory is that of generating a
random sample from the state space of a Markov chain in accordance with the
steady-state probability law of the chain. Another problem is that of generating a
random spanning tree of a graph or spanning arborescence of a directed graph in
accordance with the uniform distribution, or more generally in accordance with a
distribution given by weights on the edges of the graph or digraph. This article
gives algorithms for both of these problems, improving on earlier results and
exploiting the duality between the two problems. Each of the new algorithms
hinges on the recently introduced technique of coupling from the past or on the
linked notions of loop-erased random walk and ‘‘cycle popping.’’ Q 1998 Academic

Press

1. INTRODUCTION

Random sampling of combinatorial objects has found numerous applica-
tions in computer science and statistics. In such situations there is a
Ž .usually finite space x of objects and a probability distribution p on x ,
and we seek a random algorithm whose output is an element of x so that

Ž . Žobject x g x is returned as our sample with probability p x if more than
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.one sample is desired, the algorithm is repeated . One effective method for
random sampling is to construct a Markov chain whose steady-state
distribution is p . Then one may start the Markov chain in some arbitrary
state, run the chain for a long time, and output the final state as the

Ž .sample the ‘‘Monte Carlo method’’ . The final state will be a sample from
a probability distribution that can be made arbitrarily close to p , if the
chain is run for long enough. Despite much work at determining how long

w xis ‘‘long enough’’ 19, 37, 21, 44, 56, 20 , this remains a difficult matter,
requiring delicate analysis in each individual case.

Now suppose that we had a general algorithm that, when given a
Markov chain, would determine on its own how long to run the chain, and
then would output a sample distributed exactly according to the stationary
distribution p . Then not only could we eliminate the initialization bias

Žfrom our samples obtaining what we call ‘‘exact’’ or ‘‘unbiased’’ random
.samples , but we could also get these samples in finite time without first

having to analyze the convergence properties of the Markov chain.
This might seem to be too much to ask for, but a few years ago

Asmussen, Glynn, and Thorisson showed that such an approach is possible,
w xprovided the algorithm is told how many states the Markov chain has 6 .

Lovasz and Winkler subsequently showed that the goal was not only´
w x Žtheoretically possible but computationally feasible 45 . Here and in a

w x. Žcompanion article 55 we give the best known algorithms Subsection 1.2
.of this article gives a more detailed comparison . These algorithms are

simple and efficient, and are quite well suited to applications. The impa-
tient reader may turn to Subsection 1.1 to see what such an algorithm can
look like.

Before we proceed, we need to clarify what exactly it means to say that
an algorithm is ‘‘given’’ a Markov chain. There are two distinct senses of
the word ‘‘given’’ that we will find useful. In the passï e setting the
algorithm is given a NextState( ) procedure that allows it to observe
the state of a Markov chain as the chain evolves through time. In the
actï e setting the algorithm is given a RandomSuccessor( ) procedure,
which is similar to NextState( ) but first sets the state of the Markov

Žchain to some particular value namely, the argument of the call to
.RandomSuccessor( ) before letting it run one step and returning the

random successor state. In both settings we refer to the problem of
Žgenerating a random state of the Markov chain in accordance with the

.steady-state distribution of the chain as the random state problem.
In Section 2 we review the philosophy behind the coupling from the past

Ž .CFTP protocol, which is a general exact sampling procedure that uses
three subroutines for which there is a good deal of flexibility in implemen-

w xtation. We first introduced CFTP in 55 , and we focused on a version
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known as monotone-CFTP. The algorithm in Subsection 1.1 is a more
Ž .general but less efficient version of CFTP that we call voter-CFTP

because of its connection with the voter model studied in the theory of
interacting particle systems. Section 4 explains these connections, and
bounds the running time of voter-CFTP as well as another version of
CFTP which we call coalescing-CFTP.

For the passive setting, in Section 3 we give a CFTP-based algorithm for
the random state problem that runs within a fixed multiple of the cover
time and hence is within a constant factor of optimal. As for the active
setting, it is clear that any passive-case algorithm will work in the active
case, but the cycle-popping algorithm discussed in Sections 6 and 7 does
even better in general, returning an answer within the mean hitting time of

Ž .the Markov chain rather than the cover time up to constant factors . In
actual practice, cycle popping is implemented via a variant of simple

Ž .random walk called loop-erased random walk LERW , rather than the
‘‘random stacks’’ that give the algorithm its name; however, random stacks
provide a helpful way of analyzing the behavior of the algorithm, and we
think that the stacks picture is one that other probabilists may find useful
as well.

One particular sort of random sampling problem that has gotten special
attention over the past few years is the problem of generating a random
spanning tree of a finite graph, where each spanning tree is to have equal
probability of being generated. More generally, one can have a finite graph

Ž .or digraph G in which each directed or undirected edge comes equipped
with a positive real number called its weight, where one wishes to generate
a random spanning tree or in-directed spanning arborescence such that the
probability with which any particular treerarborescence is generated is
proportional to the product of the weights of its constituent edges.
ŽHereafter, we shall often call in-directed arborescences ‘‘trees’’ where
there is no danger of confusion, and we shall call the problem of generat-

.ing random spanning trees or arborescences the random tree problem.
Without going into details, we mention that applications of random span-
ning trees include

v the generation of random Eulerian tours for
w x}de Bruijn sequences in psychological tests 26

w 1 x}evaluating statistical significance of DNA patterns 5, 29, 8, 38
v Monte Carlo evaluation of coefficients of the network reliability

w xpolynomial 16, 52, 14
v w xgeneration of random tilings of regions 57, 13

1Reference 29 does not use random spanning trees, and generates biased Eulerian tours.
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ŽFIG. 1. A spanning tree of the 30 = 30 grid with a 901st outer vertex adjoined the
.boundary , chosen randomly from all such spanning trees.

Furthermore, such trees have recreational uses; the maze shown in Fig. 1
was obtained by generating a random spanning tree on a graph with 901
vertices.

We present in this article some new algorithms for the random tree
Ž .problem: one based on CFTP tree-CFTP; see Section 5 and several
Ž . Žothers based on cycle popping see Sections 6 and 7 . These algorithms

work by reducing the random tree problem to the related random tree with
root problem, i.e., the problem of generating a random tree with specified

.root. Known algorithms for generating random trees may be placed into
two categories: those based on computing determinants and those based
on random walks. Direct comparison of the two categories is difficult, as
the relative efficiency of the two algorithms depends on rather different
features of the input. However, we can show that in the class of known
algorithms based on random walk, ours are both the most general and the
most efficient. Subsection 1.3 compares these tree algorithms at greater
length.

The random tree problem might seem to be merely a special case of the
more general random state problem; however, it is a special case of central
importance, and in a certain sense there is a dual relationship between the
problem of obtaining a random state from the steady-state distribution of a
Markov chain and the problem of generating a random spanning tree of a
weighted digraph. On the one hand, one can create a Markov chain whose
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Žstates are the spanning trees of G and despite the lack of a partial
w x .ordering on the state space that our earlier article 55 relied upon one

can apply CFTP in an efficient way to get a random spanning tree of G, as
described in Section 5. More specifically, the tree sampling algorithm first
calls the general Markov chain sampling algorithm to pick the root of the
tree, and then does some additional coupling from the past to pick the rest
of the tree. On the other hand, the cycle-popping algorithm described in
Section 6 is not really a procedure for generating a random state of a
Markov chain but is in fact a procedure for generating a random spanning
tree of a graph associated with the Markov chain; to get a random sample,
one simply asks the algorithm to reveal the root of its randomly generated
tree. Thus, in the passive setting, the random tree problem is best solved
by way of the random state problem, while in the active setting, the
random state problem is best solved by way of the random tree problem.

1.1. A Simple Exact Sampling Algorithm

To illustrate the simplicity of the sampling algorithms in this article,
we give one of them here, called voter-CFTP. We have a Markov chain
with states numbered 1 through n, and a randomized procedure
RandomSucces-sor( ) that, when given a state of the Markov chain,
returns a random successor state with appropriate probabilities. We define
a two-dimensional array M with the rules

M s i i s 1 ??? nŽ .0, i

and
M s M t - 0, i s 1 ??? n ,Ž .t , i tq1, RandomSuccessor(i)

as illustrated in Fig. 2. If the Markov chain is irreducible and aperiodic,
then with probability 1, for some T all the entries of the column M willT
have the same value k. In Section 2 we show that this value k is a perfectly

Ž .random i.e., unbiased sample from the steady-state distribution of the
Markov chain.
ŽNote that it is only necessary to generate columns of the unbounded

array M until we obtain a constant column. Also note that once one has
generated the t-column all previously constructed columns can be dis-
carded, so a genuinely two-dimensional array, although conceptually help-
ful, is not really needed. Although this procedure works, variants that are

.only slightly more complicated are much more efficient; see Section 6.

1.2. History of Exact Sampling with Markö Chains

w xJust a few years ago Asmussen, Glynn, and Thorisson 6 gave the first
algorithm for sampling from the stationary distribution p of a Markov
chain without knowledge of the mixing time of the Markov chain. They
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Ž .FIG. 2. Illustration of voter-CFTP. The values in the first rightmost column are
initialized with the numbers 1, . . . , n, and the values in each of the other columns are taken
from the column to its right using the RandomSuccessor( ) procedure.

gave a general procedure that, given n and a Markov chain on n states,
simulates the Markov chain for a while, stops after finite time, and then
outputs a random state distributed exactly according to p . However, their
procedure is complicated, no bounds on the running time were given, and
the authors described it as more of an existence proof than an algorithm to

w xrun. Aldous 1 then devised an efficient procedure for sampling, but with
some bias « in the samples. Let t denote the mean hitting time of the
Markov chain, i.e., the expected number of Markov chain steps to travel
from one state i distributed according to p to another state j distributed
according to p but independent of i. Aldous’s procedure runs within time
Ž 2 . w xO tr« . Intrigued by these results, Lovasz and Winkler 45 found the´

first exact sampling algorithm that provably runs in time polynomial in
certain natural parameters associated with the Markov chain. Let E Ti j
denote the expected number of steps for the Markov chain to reach j
starting from i. The maximum hitting time h is the maximum over all pairs

Ž .of states i and j of E T . A randomized stopping time is a rule thati j
decides when to stop running a Markov chain, based on the moves that it

Ž . Xhas made so far and some additional random variables . Let T be themix
optimal expected time of any randomized stopping time that leaves a
particular Markov chain in the stationary distribution. The parameter T X

mix
is one measure of how long the Markov chain takes to randomize, and is

w x Ž2. w xdenoted by T in 45 and by t in 3 . The Lovasz]Winkler algorithm is´mix 1
Ža randomized stopping rule i.e., it works by simply observing the Markov

. Ž X . Ž 2 .chain and runs in time O hT n log n F O h n log n .mix
Meanwhile, in order to generate random domino tilings of regions, we

w xdevised the ‘‘monotone coupling from the past’’ algorithm 55 . In contrast
with the previous algorithms, this one relies on a special property called

Žmonotonicity to deal with Markov chains with huge state spaces e.g.,
35,000,000 .2 states . A surprisingly large number of Markov chains have a
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monotone structure. Figure 3 shows a random sample from the Ising
Ž w x.model of statistical mechanics see, e.g., 7, 9 generated by applying

monotone coupling from the past to the random cluster model, in conjunc-
w xtion with the clever technique due to Fortuin and Kasteleyn 30 . Further

Ž . wapplications of CFTP to huge state spaces appear or will appear in 55,
x25, 46, 40, 34, 35, 47, 51, 39, 48, 50 .

In this article we optimize the coupling from the past technique as
applied to general Markov chains. The result is an algorithm that runs
within a constant multiple of the co¨er time of the Markov chain, defined
as the expected time required by the Markov chain to visit all states,
starting from the worst possible start state. The running time of this
algorithm is much smaller than the best previously known bound on the
running time of such an algorithm, as well as being smaller than the
previous algorithms’ actual running time. In Section 5 we also show how to
apply coupling from the past to efficiently generate random spanning trees
of a graph, in spite of the fact that there is no known way to use
monotone-CFTP to solve this problem.

Ž w x.It has been noted e.g., in 45 that any exact sampling algorithm that
works for any Markov chain must necessarily visit all the states. For if it

FIG. 3. A perfectly equilibrated Ising state at the critical temperature on a 2100 = 2100
toroidal grid. This sample was generated using the method of coupling from the past. No
good rigorous bounds on the mixing time are known, yet this sample was obtained in a

w xreasonable amount of time. Details are in 55 .
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Ždid not then the algorithm could not output the unvisited state for all that
.the algorithm knows, this state might be almost transient , and it could not

Žoutput any other state for all that the algorithm knows, the unvisited state
.is almost a sink . Therefore, of the passive sampling algorithms, the cover

time algorithm is within a constant factor of optimal.2 But in the active
setting, where the algorithm is also allowed to reset the state of the

Ž 2 .Markov chain, Aldous’s O tr« approximate sampling algorithm sug-
Ž .gested that an O t -time active exact sampling algorithm should be

possible. After making several changes in Aldous’s algorithm and com-
Ž .pletely redoing the analysis, we obtained not only an O t exact sampling

algorithm for the random state problem, but also a random tree algorithm
faster than the Broder]Aldous algorithm discussed in Subsection 1.3. The
running time compares favorably with all the previous algorithms, except
the ones that apply only when the Markov chain has special properties.

w xJim Fill 27, 28 has found another exact sampling method which may be
applied to either moderate-sized general Markov chains or huge Markov
chains with special structure. His method requires the ability to simulate
the reverse Markov chain. The running time of the first of these algo-
rithms is still under investigation.

Tables 1 and 2 summarize this history. Since the original submission of
this article for publication, there have been many new developments on
perfectly random sampling using Markov chains with huge state spaces.
For information on this progress, the reader is referred to an annotated

w xbibliography of perfectly random sampling with Markov chains 58 , avail-
able on the World Wide Web, which will continue to be updated as new

Žarticles are written. The 1998 version of this document will appear in the
published proceedings of the DIMACS workshop ‘‘Microsurveys in Dis-

.crete Probability,’’ to be published by the American Mathematical Society.

1.3. History of Random Spanning Tree Generation

We are given a weighted directed graph G on n vertices with edge
weights that are nonnegative real numbers. The weight of a spanning tree,
with edges directed toward its root, is the product of the weights of its

Ž .edges. Let F G be the probability distribution on all spanning trees,
Ž .where the probability of a tree is proportional to its weight, and let F Gr

be the probability distribution on spanning trees rooted at vertex r, where
the probability of each such tree is proportional to its weight. The goal is

2Sometimes the cover time starting from a particular state is much less than the cover time
starting from the worst state. Conceivably an algorithm could do as well as the best case cover
time rather than the worst case cover time, if it were fortunate enough to be started in the
right state.
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TABLE 1
aSummary of random state algorithms

Random state algorithm Expected running time Space

Asmussen, Glynn, and finite
w xThorisson 6

b 2w x Ž .Aldous 1 - 81tr« Q n
Xcw x Ž . Ž .Lovasz and Winkler 45 O hT n log n Q n´ mix

2Ž . Ž .voter-CFTP, Section 4 O T n Q nmix
Ž . Ž .coalescing-CFTP, Section 4 O T n log n Q nmix

c Ž .cover-CFTP, Section 3 F 15T Q nc
e, fw xFill 27 under investigation

Ž .cycle-popping]LERW, - 21t Q n
fSections 6 and 7

dw x Ž . Ž . Ž .Propp and Wilson 55 Q T F O T log l Q Scouple mix
d, e, f g , hw x Ž . Ž . Ž .Fill 28 Q T Q T S or Q T q Ssep sep sep
d, e, f gw x Ž . ŽŽ . .Fill 28 Q T log T Q log T Ssep sep sep

aRefer to Table 2 for definitions of the various Markov chain parameters. Note that all
algorithms except that of Aldous are exact, i.e., free of bias. In all the cases for which the
expected running time is given, the probability of the actual running time exceeding its
expected value by more than a constant factor will decay exponentially. All algorithms are for
the active case unless otherwise specified. For the general-purpose algorithms that work for

Ž .any Markov chain top eight algorithms , time and space requirements are given for the
‘‘word model of computation,’’ for which the space required to store a single Markov chain

Ž .state, and the time needed to copy a state, are both treated as O 1 . For the algorithms that
Ž .work with huge state spaces with special structure bottom three , this idealization is not

Žused, and the space required to store a single state is denoted by S which is typically
Ž ..Q log n . In all cases the space required to write down an integer as large as the running

time, and the space required to readrgenerate a source of random or pseudo-random bits,
Ž .are both treated as O 1 quantities, negligible compared to the other space requirements.

b Ž .« bias in sample others are bias-free .
c May simply passively observe the Markov chain.
dRequires monotone implementation of the Markov chain.
eRequires the ability to simulate the time reversal of the Markov chain.
f‘‘Interruptible’’; see Section 8.
g Ž .Expected space requirements others are deterministic .
hThe second bound applies to attractive spin systems.

Ž Ž ..to generate a random spanning tree according to F G , or a random
Ž Ž ..spanning tree with fixed root r according to F G .r

The first algorithms for generating random spanning trees were based
on the matrix tree theorem, which allows one to compute the number of

Ž w x.spanning trees by evaluating a determinant see 10, Ch. 2, Theorem 8 .
w x w xGuenoche 33 and Kulkarni 41 gave one such algorithm that runs in time´

Ž 3 .O n m , where n is the number of vertices and m is the number of edges
Ž 2 Ž 5..Guenoche used m F n and stated the running time as O n . Colbourn,´
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TABLE 2
aDefinitions of Markov chain parameters used in Table 1

n s number of states
S s space required to write down a Markov chain state

Ž . Ž .l s length of longest chain monotone Markov chains only ; usually log l s O log log n
p s stationary probability distribution
E T s expected time to reach j starting from ii j

Ž . Ž . Ž .t s mean hitting time s Ý p i p j E T t F h F Ti, j i j c
h s maximum hitting time s max E Ti, j i j
E C s expected time to visit all states starting from ii
T s cover time s max E Cc i i

XT s optimal expected stationary stopping timemix
T s mixing time threshold; time for Markov chain to ‘‘get within 1re of random’’ inmix

variation distance
T s time for Markov chain to get within 1re of random in separationsep

Ž .distance T G Tsep mix
T s coupling time; maximum expected time for two states to coalesce in coupledcouple

Markov chain

a w xSee 3 for further background on these parameters.

w xDebroni, and Myrvold 16 optimized this algorithm for the generation of
many random spanning trees to make it more suitable for Monte Carlo

w xstudies. Colbourn, Day, and Nel 15 reduced the time spent computing
Ž 3.determinants to get an O n algorithm for random spanning trees. Col-

w xbourn, Myrvold, and Neufeld 17 simplified this algorithm, and showed
how to generate random arborescences in the time required to multiply

Ž Ž 2.376.n = n matrices for which the best known upper bound has been O n
w x.for 10 years 18 . The CDM economy-of-scale technique can be applied to

these subsequent determinant algorithms as well, though the speedup is
not likely to be as significant because these newer algorithms are already
fairly efficient.

A number of other algorithms use random walks, that is, Markov chains
based on the weighted directed graph G. For some graphs the best

w xdeterminant algorithm will be faster, but Broder 12 argues that for most
graphs the random-walk algorithms will be faster. Say the weighted di-
rected graph G is stochastic if for each vertex the weighted out-degree,
i.e., the sum of weights of edges leaving the vertex, is 1. If G is stochastic,
then in a sense it already is a Markov chain}the state space is the set of
vertices, and the probability of a transition from i to j is given by the
weight of the edge from i to j. Otherwise, we can define two stochastic

˜graphs G and G based on G. To get G, for each vertex we normalize the
weights of its out-directed edges so that its weighted out-degree is 1. To

˜get G, first add self-loops until the weighted out-degree of every vertex is
the same, and then normalize the weights. Markov chain parameters
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TABLE 3
aSummary of random tree algorithms

Random tree algorithm Expected running time Space

e 3 2w x w x Ž . Ž .Guenoche 33 ]Kulkarni 41 Q n m Q n´ A A
e 3 2w x Ž . Ž .Colbourn, Day, and Nel 15 Q n Q nA A

d, e 2.376 2w x Ž Ž .. Ž . Ž .Colbourn, Myrvold, and Neufeld 17 Q M n s O n Q nA A A

e 3 2w x Ž . Ž . Ž .Phillips 54 Q n undirected Q nA A

bw x Ž . Ž .Matroid basis sampling 22, 24 polynomial undirected Q n
cw x w x Ž . Ž . Ž .Broder 12 ]Aldous 2 O T undirected Q nc

b ˜w x Ž . Ž .Broder 12 Q T any graphc

w x Ž . Ž . Ž .Kandel, Matias, Unger, and Winkler 38 O T Eulerian Q nc
d Ž . Ž . Ž .tree-CFTP, Section 5 Q T any graph Q nc

d, e Ž . Ž . Ž .cycle popping]LERW, Sections 6 and 7 Q t undirected Q n
d, e Ž Ž .. Ž . Ž .cycle popping]LERW, Sections 6 and 7 O min h, t Eulerian Q n˜
c, d, e Ž . Ž . Ž .cycle popping]LERW, Sections 6 and 7 O t any graph Q n˜

aThe top three entries are based on linear algebra, the bottom six are based on random
walks, and the middle one combines both techniques. The A subscript appears in the running
time and the space requirements of the algebraic algorithms because the operations being
counted are arithmetic. In the absence of information on the numerical stability of these
algorithms, it may be advisable to use exact arithmetic. Of the random-walk algorithms, the
top three are in the passive setting and the bottom three are in the active setting. All Markov

Ž .chain parameters which are defined in Table 2 refer not to the Markov chain on the space
of trees, but to the random walk on the graph. Quantities with overbars and tildes refer to G

˜Ž . Ž .no self-loops added and G self-loops added to make the graph out-degree regular ,
respectively.

b Ž .« bias in sample others are bias-free .
c Ž w x.Has been used to analyze infinite random spanning trees see, e.g., 49 .
dAn optimal algorithm; there are graphs for which this algorithm is faster than the other

algorithms by more than any constant factor.
eInterruptible; see Section 8.

n s n s n s number of vertices of graphŽ .˜

m s number of edges of graph with nonzero weight

M n s time to multiply two n = n matricesŽ .

written with overbars refer to G, and parameters written with tildes refer
˜to G. Running time bounds given in terms of G will be better than similar

˜bounds given in terms of G.
w x w xBroder 12 and Aldous 2 independently found the first random-walk

algorithm for randomly generating spanning trees after discussing the
matrix tree theorem with Diaconis. The algorithm works for undirected
graphs and runs within the cover time T of the random walk. The coverc

3 w xtime T of a simple undirected graph is less than 2mn - n 4 , and isc



RANDOM SAMPLING AND TREE GENERATION 181

Ž . w xoften as small as O n log n 12 . Broder also described an algorithm for
the approximate random generation of arborescences from a directed

˜Ž .graph in time O T . It works well when all vertices have the samec
˜out-degree, because then T s T . For general simple directed graphs wec c

˜ ˜have T F nT , but for weighted graphs T could easily be much largerc c c
w xthan nT . Kandel, Matias, Unger, and Winkler 38 extended thec

Broder]Aldous algorithm to generate random arborescences of a directed
ŽEulerian graph i.e., one in which in-degree equals out-degree at each

.node within the cover time T .c
This led us to wonder whether an equally efficient procedure for

generating random arborescences could be found in the case of general
weighted directed graphs. The answer is ‘‘yes,’’ to within constant factors;
Section 5 shows how to use coupling from the past to generate random
arborescences from a general directed graph within 18 cover times of G.
Most of this running time is spent just picking the root, which must be
distributed according to the stationary distribution of the random walk on
˜ ˜ŽG. A sample from the stationary distribution of G may be obtained within

the cover time of G using a continuous-time simulation, as described
.briefly in the paragraph that follows the proof of Lemma 12 in Section 5.

All of these random-walk algorithms run within the co¨er time of the
graph G}the expected time it takes for the random walk to reach all the
vertices. Section 6 gives another class of tree algorithms that are generally

Žbetter than the previous random-walk algorithms except possibly the one
.given in Section 5 . These algorithms run within various versions of the

hitting time of the graph}loosely speaking, the expected time it takes to
get from one vertex to another under random walk. More precisely, the

Ž . Ž Ž ..time bounds are O t for undirected graphs, O min h, t for Eulerian˜
Ž . Ž .graphs, and O t for general graphs. We do not know whether a O t˜

algorithm exists for general graphs.
The mean and maximum hitting times are always less than the cover

w xtime, and in some cases the difference can be quite striking. Broder 12
described a simple directed graph on n vertices for which the mean hitting
time is linear in n while the cover time is exponential in n. Even for
undirected graphs these hitting times can be substantially smaller than the
cover time. For instance, the graph consisting of two paths of length nr3

Ž 3.adjoined to a clique on nr3 vertices will have a cover time of Q n but a
Ž 2 . 3mean hitting time of Q n .

In addition to actually sampling random spanning trees, several of the
random-walk algorithms were used to analyze the structure of random

w x Ž w x.spanning trees on very large or infinite graphs 2, 53, 49 see also 13 . For

3 Ž 3.When only one such path is adjoined to the clique, the worst case cover time is still Q n ,
Ž 2 .but the cover time starting from a good vertex is Q n .
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purposes of studying random spanning trees of infinite graphs, LERW is
preferable if the graph is transient, whereas the Broder]Aldous algorithm
is preferable if the graph is undirected and recurrent.

In the case of undirected graphs, there are two additional algorithms for
sampling random spanning trees. One of these algorithms simulates the
Broder]Aldous algorithm, but uses linear algebra to determine which

w xvertex and edge will next be added to the tree 54 . For weighted graphs
this approach can be faster than the Broder]Aldous algorithm, but it is
not currently competitive with the faster determinant algorithms. The
other random tree algorithm repeatedly adds a random edge and then
deletes a random edge from the resulting cycle. This approach is a special
case of a more general Markov chain algorithm for sampling maximal
bases of a matroid. This Markov chain is known to randomize in polyno-

w xmial time 22, 24 , but when it is specialized to sampling trees, the
algorithm fails to be competitive with the other tree algorithms.

Table 3 summarizes this history.

2. COUPLING FROM THE PAST

The main idea used in the first set of algorithms in this article is the
‘‘coupling from the past’’ protocol, recently introduced by Propp and

w xWilson 55 and anticipated in the nonalgorithmic work of Borovkov and
Ž w x.Foss on stochastically recursive sequences see, e.g., 11 . The idea behind

Ž .coupling from the past is simple: Suppose that a Markov chain with finite
state space x has been running for all time. Then the state at time 0 is
distributed exactly according to the stationary distribution p of the Markov
chain, assuming the chain is irreducible and aperiodic. Suppose that the
Markov chain makes use of random coin tosses that we can observe. If we
can figure out the state at time 0 by looking at the outcomes of a finite
number of these tosses in the recent past, then the result is an unbiased
sample.

In general, the three ingredients for making CFTP workable are a
Ž .procedure for randomly generating maps from x to itself , a method of

composing random maps, and a test to determine if a composition of random
Žmaps is collapsing i.e., if the composition sends every state to one particu-

.lar state . Not only must these three subprocedures be efficient, but the
random-map generator RandomMap( ) must preserve the target distribu-

Ž .tion as described later and must have the property that collapsing occurs
after composition of relatively few randomly chosen maps.

In applications where x has a specific combinatorial structure, one can
often exploit this structure in one’s design of the RandomMap( ) proce-

Ž .dure as we will do in Section 5 . In the case we consider now, where x is
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just a set with n elements, there is no such structure, and a map from XX to
Ž n.itself of which there are n is simply given by a list of length n. We will

give three specializations of CFTP that do the job: the voter-CFTP
Žalgorithm given in Subsection 1.1 and analyzed in Section 4, the only

.slightly different coalescing-CFTP algorithm also discussed in Section 4,
and the cover-time algorithm discussed in Section 3. In all three cases,
RandomMap( ) has the following two properties:

1. The distribution p is preserved

p i Pr f i s j s p j for all j,Ž . Ž . Ž .Ý
i

where f is the result of a call to RandomMap( ).
2. When f , f , . . . are independent values of RandomMap( ),y1 y2

there is a nonzero chance that the composition f ( f ( f ( ??? con-y1 y2 y3
Žverges to a constant-valued function i.e., with probability greater than

zero there exists a constant function F and a number N such that the
.composition f ( f ( ??? ( f is F for all n G N .y1 y2 yn

In the active case, one natural idea for implementing the Random-
Map( ) procedure is, for i ranging from 1 to n, to apply RandomSucces-

Ž .sor( ) to the state i, obtaining f i . This gives the simple algorithm of
Subsection 1.1. It is easy to see that the procedure satisfies condition 1
above, but if the Markov chain has periodicity problems, condition 2 will
not be satisfied. Therefore, for the present discussion we prefer to use the
following fully general procedure: For i ranging from 1 to n, with probabil-

Ž .ity 1r2 set f i s i, and with probability 1r2 use RandomSuccessor( )
Ž .to set f i . As before, this satisfies condition 1. Moreover, if there is some

state j which is reached with positive probability starting from any state i,
then the composition of n independent outputs of RandomMap( ) has a
positive chance of being a constant map, and therefore condition 2 above
is also satisfied. If there is no such state j, one can check that there are
multiple steady-state distributions; so this RandomMap( ) procedure works
precisely when the Markov chain defined by RandomSuccessor( ) has a
unique steady-state distribution p .

In the passive case, an analogous idea for implementing the Ran-
domMap( ) procedure is, for i ranging from 1 to n, to let the Markov

Ž .chain run i.e., to repeatedly call NextState( ) until the Markov chain
Ž .is in state i, and to set f i to be the state of the Markov chain after one

further application of NextState( ). In the passive setting we need the
somewhat stronger hypothesis of irreducibility, i.e., that every pair of
vertices is connected by paths of positive probability going in both direc-
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Žtions, so as to ensure that the cover time is finite. Otherwise this
.RandomMap( ) procedure might take forever to run. As with the active

case, probability 1r2 self-loops can be adjoined to eliminate periodicity
problems and thereby ensure that condition 2 is satisfied.

w x Ž .We quote from 55 the pseudo-code for coupling from the past Fig. 4
and the theorem proving that it works. This validates the claim we made
for the simple algorithm described in Subsection 1.1. Section 3 will
describe a better implementation of the RandomMap( ) procedure, which
in conjunction with the top-level protocol described in Figure 4 will yield
unbiased samples in time proportional to the cover time.

t2Ž .For convenience we have let F ? denote the composition of randomt1

maps that maps a value at time t to a value at time t G t ,1 2 1

F t2 s f ( f ( ??? ( f ( f .t t y1 t y2 t q1 t1 2 2 1 1

When coupling from the past is applied to Markov chains with huge state
spaces that have special structure, the outputs of RandomMap( ) and the
compositions of these functions are not represented explicitly, but for the
application to general Markov chains, we may assume that these functions

Ž . 0Ž .are represented as arrays of size n where the ith entry is f i or F i . Wet t
Ž .remark that the foregoing procedure can be run with O n memory.

THEOREM 1. If RandomMap( ) satisfies conditions 1 and 2, then with
probability 1 this procedure returns a ¨alue, and this ¨alue is distributed
according to the stationary distribution of the Markö chain.

Proof. Because RandomMap( ) satisfies condition 2, there must be an
L such that the composition of L random maps has a positive chance of

0 Ž . yL Ž .being constant. Each of the maps F ? , F ? , . . . has some positiveyL y2 L
probability « ) 0 of being collapsing, and because these events are inde-
pendent, it will happen with probability 1 that one of these maps is

FIG. 4. Pseudo-code for coupling from the past.
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collapsing, in which case F 0 is constant for some M, and the algorithmyM
terminates.

0Ž .Let X be p-random, and let Y s F X . For each fixed t, Y ist t t
p-random. If CoupleFromThePast stops, then for some M, F 0 isyM
collapsing, and for all t - yM, Y s Y . The limit Y s lim Yt yM y` t ªy` t
exists. But the algorithm returns precisely this limit Y , which is p-y`

random.

We remark that running the chain forward in time until coupling is
Žachieved i.e., finding the smallest t ) 0 for which f ( ??? ( f ( f isty1 1 0

.constant and then using this constant value as the output of the protocol
will usually yield a biased sample. This is related to the fact that, unlike
the infinite composition f ( f ( f ( ??? which typically is well definedy1 y2 y3
with probability 1, the infinite composition ??? ( f ( f ( f typically is well2 1 0
defined with probability 0.

For an exhaustive bibliography on coupling from the past and other
recent articles on perfectly random sampling with Markov chains, see
http://dimacs.rutgers.edu/;dbwilson/ exact.

3. THE COVER-TIME ALGORITHM

Here we give the new RandomMap( ) procedure which makes the
CFTP protocol run in time proportional to the cover time. This procedure
outputs a random map from x to x satisfying conditions 1 and 2 after
observing the Markov chain for some number of steps.

Note that with f denoting the result of a call to RandomMap( ), it is
Ž . Ž .not required that the random variables f i and f i be independent. So1 2

we will use the Markov chain to make a suitable random map, yet we will
contrive to make the map have a small image. Then the algorithm will
terminate quickly. The RandomMap( ) procedure consists of two phases.
The first phase estimates the cover time from state 1. The second phase
starts in state 1, and actually constructs the map.

Ž .Initialization phase. Expected time F T q T q T s 3Tc c c c

v Wait until we visit state 1.
v Observe the chain until all states are visited, and let C be the

number of steps required.
v Wait until we next visit state 1.

1Ž Ž . .Construct Map phase. Expected time F T " 4T s 3Tc c c2

v Randomly set an alarm clock that goes off every 4C steps.
v When we visit state i for the first time in this phase, commit to
Ž .setting f i to be the state when the alarm clock next goes off.
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FIG. 5. Pseudo-code for RandomMap( ). The Construct Map phase starts out looking at
w xstate 1. The variable status i indicates whether or not state i has been seen yet. When i is

w xfirst seen, status i gets set to SEEN and i is put on the stack. When the alarm clock next goes
w xoff, for each state i in the stack, Map i gets set to be the state at that time.
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Pseudo-code for RandomMap( ) is given in Fig. 5.
The following two lemmas show that this implementation of Ran-

domMap( ) satisfies the two necessary conditions.

LEMMA 2. If X is a random state distributed according to p , and
Ž .f s RandomMap( ), then f X is a random state distributed according to p .

Proof. Let c be the value of clock when state X was encountered for
the first time in the Construct Map phase. Because clock was randomly
initialized, c itself is a random variable uniform between 1 and 4C. The

Ž .value f X was obtained by starting the Markov chain in the random state
Ž .X and then observing the chain after some number 4C y c of steps,

where the distribution of the number of steps is independent of X. Here
Ž .f X is also distributed according to p .

LEMMA 3. The probability that the output of RandomMap( ) is a con-
stant map is at least 3r8.

Proof. Let CX be the first time at which we have visited all the states
Žduring the Construct Map phase counting the start of the Construct Map

.phase as time 0 and let A denote the first time at which the alarm clock
goes off. If CX F A, then the output of RandomMap( ) will be a constant
map.

Because C and CX are independent identically distributed random
variables,

X 1w xPr C F C G .2

On the other hand,

3w xPr A G C s .4

Because A and CX are independent conditioned on C,

X X 3w x w x w xPr C F C F A s Pr C F C ? Pr C F A G .8

THEOREM 4. Using the pre¨ious RandomMap( ) procedure with the
CFTP protocol yields an unbiased sample from the steady-state distribution.
On a¨erage the Markö chain is obser̈ ed for F 15T steps. The expectedc

Ž . Ž .computational time is also O T , the memory is O n , and the expectedc
Ž .number of external random bits used is O log T .c

Proof. Because the odds are G 3r8 that a given output of Ran-
domMap( ) is constant, the expected number of calls to RandomMap( )
before RandomMap( ) returns a constant map is F 8r3. Each call to
RandomMap( ) observes the chain an average of F 6T steps. Beforec



PROPP AND WILSON188

starting we may arbitrarily label the current state to be state 1 and thereby
we reduce the expected number of steps from 16T to 15T .c c

The algorithm is likely to be better than the preceding analysis suggests,
and if the Markov chain may be reset, even faster performance is possible.
Also note that in general some external random bits will be required, as
the Markov chain might be deterministic or almost deterministic. When

w xthe Markov chain is not deterministic, Lovasz and Winkler 45 discuss´
how to make do without external random bits by observing the random
transitions.

Ž .We remark that T s O h log n . To see this, consider random walkc
from the vertex i that maximizes the expected time until all states have
been visited. Let U j be the indicator random variable for state j nott

Ž j.having been visited by time t and let U s max U , so that U is thet j t t
indicator variable for there being some state that remains unvisited by

w j xtime t. By Markov’s inequality Exp U F 1r3, and by submultiplicativityu3h v

w j x m u v u vExp U F 1r3 . Put H s 3h and L s log n for convenience. Wem u3h v 3
w x Žhave T s Ý Exp U , where the first HL terms in the sum indeed all ofc t t

. w xthem are at most 1 and each subsequent term satisfies Exp U Ft
w j x mÝ Exp U F nr3 when t G mH. Hence we can bound the entire sum toj t

1 1Ž . Ž .get T F HL q H 1 q q q ??? s H L q 3r2 .c 3 9

4. RUNNING TIME FOR VOTER-COUPLING FROM THE
PAST AND COALESCING-COUPLING FROM THE PAST

The CFTP procedure given in Fig. 4 is closely related to two stochastic
processes, known as the ¨oter model and the coalescing random-walk model.
Both of these models are based on Markov chains, in either discrete or
continuous time. In this section we bound the time it takes for these two
processes to stabilize, and then we give a variant of the CFTP procedure
Ž .for the active setting and we bound its running time.

Ž .Given a discrete-time Markov chain on n states, in which state i goes
to state j with probability p , one defines a ‘‘coalescing random walk’’ byi, j
placing a pebble on each state and decreeing that the pebbles must move
according to the Markov chain statistics, with one further proviso: pebbles
must move independently unless they collide, at which point they must
stick together. For ease of exposition we treat only Markov chains in
discrete time, though there are no difficulties in generalizing our results to
continuous time by taking limits of suitable discrete-time chains. The
results in this section hold true vacuously when the mixing time of the
Markov chain is infinite, but are informative when the mixing time is
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finite. In the case where a finite Markov chain is irreducible but periodic,
so that its mixing time is infinite, the usual trick of adjoining self-loops
gives an aperiodic Markov chain with finite mixing time.

ŽThe original Markov chain also determines a generalized finite dis-
.crete-time voter model, in which each of n voters starts by wanting to be

the leader. At each time step each of the voters picks a random neighbor
Ž .voter i picks neighbor j with probability p , each of the voters asks fori, j
whom that neighbor will vote, and at the next time step changes his choice

Žto be that candidate. These updates are done in parallel: a voter at time n
.switches to the vote that a randomly chosen neighbor held at time n y 1.

The voter model has received much attention in the continuous-time case,
usually on a grid where p is nonzero only if i and j are neighbors on thei, j

w x w xgrid. See 36, 32 , and 43 for background on the voter model.
These two models are dual to one another, in the sense that each can be

Ž w x.obtained from the other by simply reversing the direction of time see 3 .
Specifically, suppose that for each t between t and t , for each state we1 2
choose in advance a successor state according to the rules of the Markov
chain. We can run the coalescing random-walk model from time t to t1 2
with each pebble following the choices made in advance. Or we can run
the voter model from time t to time t using the choices made in advance.2 1
The pebble that started at state i ends up at state j if and only if voter i
ends up planning to vote for voter j.

Note that a simulation of the voter model is equivalent to running the
CFTP procedure in Fig. 4. Because the CFTP algorithm returns a random
state distributed according to the steady-state distribution p of the Markov
chain, or else runs forever, it follows that if all the voters ever agree on a
common candidate, their choice will be distributed according to the
steady-state distribution of the Markov chain. This result holds for both
discrete- and continuous-time versions of the voter model.

In this section we analyze the running time of this process. We show

THEOREM 5. The expected time before all n ¨oters agree on a common
candidate is less than 49T n steps, where T is the mixing time of themix mix
associated Markö chain.

Ž .T is defined just after the statement of Theorem 6.mix
Because every RandomMap( ) step of voter-CFTP, or equivalently

Ž .every time step in a simulation of the voter model, takes Q n computer
time, the preceding theorem implies that one can obtain random samples

Ž 2 .within Q T n time. However, we give a variation of the algorithm thatmix
Ž .runs in Q T n log n time. We can do this by taking advantage of themix

connection with the coalescing random walk model. As time moves for-
ward, the pebbles tend to get glued together into pebble piles, and less
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computational work is needed to update their positions. The total number
Žof pile moves that need to be made where the decision to leave a pile in

.the same place counts as a move is just the number of piles that exist at
each step, summed over all steps in the time interval under consideration.
Of course simply waiting until all the pebbles get glued together will in
general result in a biased sample; one needs to use the CFTP approach to
get rid of the bias. We give the actual variation on the CFTP algorithm
that does the job after proving the following theorem about the coalescing
random walk model.

THEOREM 6. The expected time before all the pebbles coalesce is less than
49T n steps. The expected number of pebble pile mo¨es until coalescence ismix
less than 49T n ln n.mix

Theorem 5 is immediate from Theorem 6.
The mixing time T is a measure of the time it takes for a Markovmix

chain to become approximately randomly distributed, and is formally
defined using the variation distance between probability distributions. Let
m and r be two probability distributions on a space x ; then the variation

5 5distance between them, m y r , is given by

15 5m y r ' max m A y r A s m x y r x .Ž . Ž . Ž . Ž .Ý2
A:x x

Let rU k be the probability distribution of the state of the Markov chainx
when started in state x and run for k steps. Define

U k U k5 5d k s max r y r .Ž . x y
x , y

Then the variation distance threshold time T is the smallest k for whichmix
Ž . Ž . Žd k F 1re. It is not hard to show that d k is submultiplicative in the

U kŽ . Ž . Ž .. 5sense that d k q l F d k d l and that for any starting state x, r yx
5 Ž .p F d k .
To prove Theorem 6 we make use of the following lemma.

Ž .LEMMA 7. Let r denote the probability distribution gï en by r y s p .x x x, y
Suppose that for each x the ¨ariation distance of r from p is at mostx
« - 1r8. Then the expected time before all the pebbles are in the same pile is

Ž w 1r3 x6.F 4r 1 y « n, and the expected number of pile mo¨es, that is, the
expected sum of the number of pebble piles at each time step until they are all

Ž w 1r3 x6.Ž .in the same pile, is F 4r 1 y « n ln n . If « - 1r2, the bounds
Ž . Ž .remain O n and O n log n , respectï ely.
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Proof. Suppose that there are m ) 1 piles at the start. Let 0 - b - 1
Ž . Ž .and 1r2 - a - 1. Say that x avoids y if r y - bp y . Call a state lonelyx

Ž .if it is avoided by at least 1 y a m states that are initially occupied by
piles, and popular otherwise. We have

1 y b 1 y a m p y F 1 y b p yŽ . Ž . Ž . Ž . Ž .Ý Ý
x , yy lonely

pile at x
x avoids y

F p y y r yŽ . Ž .Ý x
x , y

pile at x
x avoids y

5 5F p y rÝ x
x

pile at x

F m« .

Let

1 «
g s p y G y ,Ž .Ý 1 y a 1 y by

Ž . Ž .where p y s p y if y is popular, and 0 if y is lonely. Because « - 1r2,
we may choose a and b in the specified intervals so that g ) 0.

Let A be the number of pile mergers that happen at state y after oney
step. A is one less than the number of piles that get mapped to y, unlessy
no piles at all get mapped to y, in which case A is zero. Thus they
expected value of A is the sum of the probabilities that each individualy
pile gets mapped to y, minus 1, plus the probability that no pile gets
mapped to y.

u vSuppose y is popular. There are at least a s a m piles that have at
Ž . Ž .least a bp y s bp y chance of being mapped to y. If we suppose that

Ž .there are exactly a piles that get mapped to y with probability bp y , and
no other piles can get mapped to y, we can only underestimate A . Thusy
we find

a
Exp A G abp y y 1 q 1 y bp y ,Ž . Ž .Ž .y

which is also true even if y is lonely.
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w x Ž .Because a G 1, the foregoing expression for Exp A is convex in p y ,y
and we get

Exp AÝ y
y

aabg bg
G n y 1 q 1 yž /ž /n n

2 3bg bg bga a aG abg y n q n 1 y q yž / ž / ž /ž / ž / ž /1 2 3n n n

2
bg a a y 1 a y 2Ž . Ž .

G 1 y ,ž /2n 3n

u vas bg F 1. Because a ) 1r2 and m G 2, a s a m G 2. If a s 2, then we
have

a y 2 a
a y 1 1 y s .Ž . ž /3n 2

If a G 3, we use n G m G a to get

a y 2
a y 1 1 yŽ . ž /3n

a y 2 2 1 2 1 a
G a y 1 1 y s a 1 y G a 1 y ) .Ž . 2ž / ž /ž /3a 3 3 9 2a

Therefore, when we let mX denote the number of piles at the next step,
whenever m ) 1 we have

X 2w xExp m y m s Exp A G d m ,Ý y
y

Ž .2where d s bga r4n.
Ž . ŽWhen there are m piles initially, let T m be the worst case over all

.initial placements of the piles expected number of time steps before all
Ž .the piles coalesce, and let W m be the worst case expected sum of the

Žnumber of piles at each time step before coalescence a measure of the
.total amount of work the algorithm must do . Using the previous bound on

the expected rate of decrease in the number of piles, we show that

1 y 1rmŽ .
T m F ,Ž .

d
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and

ln m
W m F ,Ž .

d

from which the lemma follows after choosing a and b appropriately
Ž 1r3 .a s b s 1 y « if « - 1r8 .

Ž .We will prove both estimates using a technical sublemma Claim 8 . We
introduce the integer-valued stochastic process m , m , m , . . . , where m0 1 2 t

Ž .is the number of heaps at time t we take m to be a constant . Putting0
2 w < xD s d m , we have Exp m m s m F m y D for all m ) 1, so thatm tq1 t m

w < xProb m F m y 1 m s m G D rm for all times t. Indeed, this re-tq1 t m
mains true if we condition on some event measurable with respect to
m , m , . . . , m . From this it easily follows that m converges to 1 almost0 1 ty1 t

Ž .surely indeed in finite expected time . Therefore it makes sense to define
Ž . Ž . Ž . Ž .F s f m q f m q ??? where f ? is any function satisfying f 1 s 0.t t tq1

Ž .In particular, if f m s 1 for all m ) 1, F is the number of time stepst
Ž .remaining before coalescence occurs, while if f m s m for all m ) 1, Ft

is the amount of work that remains to be done before coalescence occurs.
w x Ž . Ž . ŽWe wish to prove Exp F F B m , where the bound B m is 1 y0 0

. Ž .1rm rd in the T-case and ln m rd in the W-case. We will do this by
w < x Ž .showing, more generally, that Exp F m s m F B m for all t.t t

CLAIM 8. Suppose m is a sequence of integer-̈ alued random ¨ariablest
w < xsatisfying 1 F m F m , and suppose Exp m E F m y D where E istq1 t tq1 m

Ž .some m , m , . . . , m -measurable e¨ent lying inside the e¨ent m s m and0 1 t t
where D ) 0 when m ) 1. Suppose F is a sequence of random ¨ariablesm t

Ž . Ž .satisfying F s 0 when m s 1 and F s f m q F when m ) 1. If B xt t t t tq1 t
Ž . XŽ . YŽ .is a function such that B 1 G 0, and B x G 0 and B x F 0 when x G 1,

XŽ . Ž . w < x Ž .and B m G f m rD for m ) 1, then Exp F m s m F B m .m t t

Ž . w < xProof of claim. Let F m s sup sup Exp F E where E ranges overt E t
all subevents of m s m that are measurable with respect tot

w < xm , m , . . . , m ; this supremum is finite because Exp F E is bounded0 1 t t
Ž Ž . Ž . Ž ..above by max f m , f m y 1 , . . . , f 1 times the expected time until

Ž . Ž .m s 1. We will show that F m F B m . The claim is true when m s 1,t
w < x Ž . Ž . Ž .as Exp F m s 1 s 0 F B 1 . Suppose m ) 1, and assume F k F B kt t

for all k - m. We have

m

<w x w xExp F s Prob m s k Exp F m s kÝtq1 tq1 tq1 tq1
ks1

Žwhere all probabilities and expectations are implicitly conditional upon
.the event m s m and the values m , . . . , m . For all 1 F k F m y 1,t 0 ty1
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the induction hypothesis yields

<Exp F m s k F F k F B k ,Ž . Ž .tq1 tq1

w < xso, putting p s Prob m - m m s m , we havetq1 t

my1
<w x w xExp F F Prob m s k B k q 1 yp Exp F m s m .Ž . Ž .Ýtq1 tq1 tq1 tq1

ks1

On the other hand,

my1

w xExp B m s Prob m s k B k q 1 y p B m .Ž . Ž . Ž . Ž .Ýtq1 tq1
ks1

Comparing these last two formulas, we obtain

<w xExp F F Exp B m q 1 y p Exp F m s m y B m .Ž . Ž . Ž .Ž .tq1 tq1 tq1 tq1

XŽ . YŽ .But our assumptions on B x and B x yield

w xExp B m F B Exp mŽ . Ž .tq1 tq1

F B m y DŽ .m

F B m y D BX mŽ . Ž .m

F B m y f m ,Ž . Ž .
and

<Exp F m s m F F m ,Ž .tq1 tq1

so

w xExp F F B m y f m q 1 y p F m y B mŽ . Ž . Ž . Ž . Ž .Ž . Ž .tq1

s pB m y f m q 1 y p F m ,Ž . Ž . Ž . Ž .
and

w x w xExp F s f m q Exp FŽ .t tq1

F pB m q 1 y p F m .Ž . Ž . Ž .

Taking the sup over all t and all values for m , . . . , m , we get0 ty1

F m F pB m q 1 y p F m ,Ž . Ž . Ž . Ž .

Ž . Ž .from which it follows that F m F B m .
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We use the foregoing claim with F s T and F s W to prove the desired
upper bounds. The functions T and W satisfy the necessary recursive
definitions, and the alleged upper bounds on their expected values take on
the right value when m s 1 and satisfy the necessary derivative require-

2Ž .ments with D s d m .m

Proof of Theorem 6. Following an approach used by Lovasz and Win-´
w xkler 45 , we work with a Markov chain derived from the original Markov

chain. We let one step in the derived Markov chain be T steps in the
original chain. If two pebble piles coalesce in the derived chain, they must
have coalesced in the original chain, so we focus on the derived chain. We
can choose for instance T s 9T , so that by submultiplicativity the « inmix
the hypothesis on variation distance in Lemma 7 is bounded by ey9. Then

Ž w 1r3 x6.9 = 4r 1 y « - 49, and we conclude from the lemma that the
expected number of time steps in the original chain until coalescence is
less than 49T n, and the expected number of pebble moves is less thanmix
49T n ln n.mix

The pebbles model can be used to give us a variation on coupling from
the past suitable for general Markov chains in the active setting. Rather

Ž .than ‘‘pulling the values back’’ as voter-CFTP does, which requires Q n
Ž .work per time step for O T n time steps, we start at some time in themix

past and run the simulation forward in time. As the pebble piles coalesce,
less work is required in later time steps. But note that until this coales-
cence has largely happened and there are few remaining pebble piles, the
amount of work required per time step could still be quite large. The usual

Žstrategy of starting at successively larger times in the past e.g., at times
i .y2 , i s 0, 1, 2, 3, . . . will not be optimal, as the most time-consuming

Ž Ž ..parts of the pebble-pile simulations get repeated O log T n times, andmix
Ž Ž ..we would get a time bound of O T n log n log T n . Instead we usemix mix

the Markov chain to define a random-map procedure, and then we
compose these random maps in the fashion prescribed in the coupling
from the past algorithm to get a random sample. To construct a random
map, run the coalescing random walk process and count the number of
steps before all the pebbles are in the same pile. Then restart the
coalescing random-walk process and run it for precisely that many steps.
The places where the pebbles end up define the random map, which is
collapsing with probability 1r2. The expected number of Markov simula-
tion steps to create the map is at most 2 = 49T n ln n q 49T n, andmix mix
the expected number of maps that we need to make is at most 2. The

Ž .algorithm makes on average at most 196T n ln n q 1r2 calls to Ran-mix
domSuccessor( ). We leave it as an exercise to check that the computa-

Ž .tional overhead can be kept similarly small while using only Q n space.
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5. RANDOM SPANNING TREES VIA COUPLING
FROM THE PAST

We now turn from the study of the random state problem to the study of
the random tree and the random tree with root problems. Given a directed

� 4graph G with vertex set 1, . . . , n and with a stochastic weighting on its
Ž .directed edges i.e., weights of outgoing edges at each vertex sum to 1 , let

x be the set of directed spanning trees of G with edges directed toward
the root. Recall that we have put a probability measure F on x by letting

Žthe probability of each directed tree be proportional to its weight defined
.as the product of the weights of its constituent directed edges . Also, for

each vertex r we have defined F as the distribution on directed spanningr
trees rooted at r in which probability is proportional to weight. Our goal is
to give efficient algorithms for sampling from the distributions F and F .r

We create a Markov chain on the state space x as follows. Take the
root of the current tree and pick a random successor according to the
underlying Markov chain on G; make this vertex the new root, add an arc
from the old root to the new one, and delete the outgoing edge from the
new root. We call this Markov chain M. See Fig. 6. It is easy to check that
the distribution F is stationary under M. Indeed, given any directed tree T
with root r, its predecessors in the chain M are those trees T obtaineds
from T by adding an edge r ª s and deleting an edge x ª r ; this x is
uniquely determined by T and s, and is the root of T . The weight of Ts s
times the weight of x ª r equals the weight of T times the weight of

Ž .r ª s, and summing this equation over s with x varying accordingly we
verify that M preserves F.

w x w xBroder 12 and Aldous 2 used the Markov chain M to generate
random spanning trees of connected undirected graphs. They exploited the
fact that the simple random walk on an undirected graph is a reversible
Markov chain to make an algorithm that outputs a random tree in finite
time. Kandel et al. also used this Markov chain in their generation of

FIG. 6. Example move of the Markov chain on arborescences. The root, shown in white,
moves according to the underlying Markov chain.
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random spanning arborescences of connected Eulerian directed graphs.
We will apply the method of coupling from the past to the tree Markov
chain to sample from the set of spanning arborescences of a general
strongly connected directed graph. All of these algorithms are passive-
simulation algorithms, and Theorem 11 and Corollary 12 state running-time
estimates for our algorithm in the passive case; in the active case, the
constant factors are smaller.

Fix a vertex r, and consider the following Markov chain M on the set ofr
spanning trees rooted at r : Given a spanning tree rooted at r, perform the
random walk as described previously until the root returns to r. Call the
path the walk takes from r to r an excursion. The resulting spanning tree
is the next state of the Markov chain M . The following two easy lemmasr
show that the steady-state distribution of this Markov chain is the desired
distribution on the set of spanning trees rooted at r.

LEMMA 9. M is irreducible and aperiodic if the underlying graph isr
strongly connected.

Proof. Because the graph is strongly connected, there is a trajectory
r s u , u , . . . , u s r that visits every vertex. Consider a tree T rooted at0 1 l

Žr. For i from l y 1 down to 1, perform an excursion or succession of
.excursions that goes to u via the trajectory, then returns to r via the pathi

in T. For each vertex ¨ other than r, the last time ¨ was reached, the
succeeding vertex is its parent in the tree. Regardless of the initial starting
tree, after some number of excursions the final tree is T. Thus M can ber
neither reducible nor periodic.

Henceforth in this section, we assume that G is strongly connected,
though the theorems are vacuously true even if it is not.

LEMMA 10. M preser̈ es F .r r

Proof. We already know that M preserves F. Pick a random tree, and
do the walk N steps. Each tree in the walk is random. If the ith tree is
rooted at r, then its conditional distribution is governed by F . Considerr
the subsequence of trees rooted at r. Each tree occurs in the subsequence

Ž .with the proper frequency, and each tree other than first is obtained
from the previous tree by running M one step.r

We can use the Markov chain M as the basis for a RandomMap( )r
Ž .procedure that satisfies the requirements of the CFTP procedure: 1

Ž . ŽRandomMap( ) preserves F , 2 maps returned by RandomMap( ) ‘‘treer
. Ž .maps’’ may be easily composed, and 3 it is easy to determine whether or

not a composition of tree maps is collapsing.
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w xWe will represent a spanning tree by an array T of size n, with T i
Ž .giving the label of the parent of vertex i or nil if i is the root r . After

Žone step in the Markov chain M that is, after one or more steps in ther
Markov chain M corresponding to a single excursion in the underlying

. XMarkov chain from r to r , T will be replaced by some other tree T
rooted at r. We will see that the map that sends T to T X can be
represented by an array U of size n, each entry of which is either nil or
the label of a vertex. Note that every time the Markov chain M advances
one step, it makes the current root-vertex ¨ the child of its successor ¨i iq1
in the excursion and it makes ¨ the new root. To summarize the effectiq1

w xof these moves, let U i be nil if i does not show up in the excursion or if
w xi s r, and otherwise let U i be the vertex occurring after i in the

w x w x w xexcursion the last time that i is visited. Then T 9 i s U i unless U i s
Xw x w x Ž .nil, in which case T i s T i which may be nil .

Composing tree maps given by these arrays U is straightforward. If U1
and U represent tree maps, where U is applied before U , the composed2 1 2

Ž .w x w x w xmap is obtained by setting U (U i to U i unless U i is nil, in which2 1 2 2
Ž .w x w xcase we set U (U i to U i . Thus we can compose tree maps effi-2 1 1

ciently. We can also test if a map is collapsing: it is collapsing if and only if
the only nil entry is at the root. Hence all the requirements for CFTP are
satisfied:

THEOREM 11. The procedure shown in Fig. 7 returns a random arbores-
cence with root r. The expected number of times we obser̈ e the Markö chain

Ž .is F 3T , and the memory used is O n .c

Proof. The procedure repeatedly generates random excursions which
Ždefine random tree maps as previously described, composes them pre-

.pending new maps to the current map as prescribed by CFTP , and returns
the resulting tree. The expected run time is at most three cover times: we
wait until we see the root, then we visit all the vertices, and then we return

Ž .to the root. O n memory is used to store the directed tree and remember
which vertices were discovered during the present excursion.

Note that the 3T time bound is rather pessimistic. If many arbores-c
cences with the given root are desired, then the average time per directed
tree is one cover-and-return time.

This handles the random tree with root problem in the passive case. As
for the random tree problem, we have:

COROLLARY 12. We can generate random arborescences within 18 co¨er
times.
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FIG. 7. Pseudo-code for generating a random arborescence with prescribed root via
w xcoupling from the past. The parent of node i is stored in Tree i . If node i has not been seen,

w xthen status i s UNSEEN. The nodes seen for the first time in the present excursion from the
w x w xroot are stored on a stack. If i is such a node, then status i s SEEN and Tree i may be

changed if i is seen again in the present excursion. When the root is encountered the present
w x w xexcursion ends; status i is set equal to DEFINED, making Tree i immutable for the nodes i

seen so far and thereby effectively prepending the excursion just finished to the preceding
excursions.

Proof. The root of a random arborescence is distributed according to
p , the stationary distribution of the underlying Markov chain. So we may
pick a random root using the unbiased state sampler treated in Section 2,
and then pick a random tree given that root. We need only observe the
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Markov chain for 15 q 3 cover times on average. The computational effort
Ž . Ž .is also O T , and the memory is O n .c

Note that result is within a constant factor of being optimal, because in
the passive case it is impossible to randomly sample a spanning tree in less
than the cover time.

ŽNow suppose that we are given a weighted directed graph not a Markov
.chain and that we wish to generate a random directed spanning tree, such

that the probability of any particular tree is proportional to the product of
the edge weights. If all the weighted out-degrees are the same, then we
may normalize them to be 1, and directly apply the previous algorithm on
the associated Markov chain. Even if the out-degrees are different, we may
still generate a random arborescence with prescribed root. The only
potential difficulty lies in picking the root of a random arborescence. But
this problem is readily resolved by considering the continuous-time Markov
chain associated with the graph. It is straightforward to generalize the
unbiased sampler, specifically the RandomMap( ) procedure, to work in
continuous time. The waiting time for a transition is an exponential
random variable. It is only necessary for the simulation to keep track of

Ž .the running total of these numbers the elapsed simulation time . The run
Ž .time is O T , where T is the cover time of the graph}the expectedc c

number of transitions before the graph is covered.
We pause here to consider how tree-CFTP relates to the Broder]

Aldous algorithm, and more generally to review the role played by time
reversal. The random walk on a weighted digraph G gives rise to a Markov
chain M on the set of trees, and it does so in a coalescent way: assuming
strong connectivity holds, the present state of the chain M is independent
of the far past of the walk on G. This makes it possible for one to apply
coupling from the past, where, as usual, one goes into the past by taking
larger and larger steps until one has gone back far enough to ensure
convergence by time 0. However, in the case where the walk on G is
reversible, one can simulate M into the past more directly using the
time-reversed walk on G. The partial tree determined by n steps of the
time-reversed walk corresponds to the set of edges in M that are forced by
the behavior of the forward-time walk in G from time yn to time 0. For
instance, if the walk on G is an unbiased random walk on an undirected
graph, one obtains the Broder]Aldous algorithm, whereas if the walk on G
is an unbiased random walk on an Eulerian directed graph, one obtains
the Kandel, Matias, Unger, and Winkler algorithm.

In general, there is no simple way to simulate the time reversal of the
random walk on G one step at a time. However, if the walk in G is at
vertex r at time 0, then one can simulate a time-reversed history in
chunks, where the chunks are separated by visits to r. These chunks are
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exactly what we have referred to as excursions, and tree maps are the way
we summarize what has happened during an excursion in terms of its
effect on our growing knowledge of the state of M at time 0.

6. CYCLE-POPPING ALGORITHMS

In this section and the following section we describe a process called
cycle popping that is quite effective at returning random spanning trees of
a directed weighted graph in the active-simulation setting. It scores over
the algorithm described in Section 5 in two respects: it does not depend on
the assumption that the digraph is strongly connected, and it is often
faster. We present two versions of cycle popping: RandomTreeWith-
Root( ), a simple algorithm for returning a random tree with a specified
root, and RandomTree( ), a slightly more complicated algorithm for
returning a random tree with a root not specified. In some cases where we
want a random tree with an unspecified root, it is possible to directly
randomly select the root in accordance with the correct distribution on the
root of a random tree, thereby reducing the random tree problem to the
simpler random tree with root problem; this is the case for undirected
graphs and Eulerian digraphs. For general digraphs, one should use
RandomTree( ).

A different way of reducing the random tree problem to the random
U Žtree with root problem is to adjoin a new vertex ¨ to the graph together

U .with arcs of weight d ) 0 from each vertex of the original graph to ¨ and
to generate a random spanning tree of the new graph rooted at ¨U. If one
deletes ¨U from this tree, the result is a forest on the original vertices. It is
not hard to show that in the case where the forest that is generated has

Ž .just one component i.e., is a tree , the conditional distribution governing
Ž . Žthis tree is in fact F G the desired distribution on the spanning trees of

.the graph G . Moreover, as d goes to 0, the chance that the forest is a tree
goes to 1; unfortunately, the running time of the algorithm goes to infinity.
What RandomTree( ) does is run RandomTreeWithRoot( ) repeat-
edly on the augmented graph with successively smaller values of d until

Ž .the forest on G that is produced is a tree, or putting it differently until
¨U has only one child in the tree generated on the augmented graph.

The actual definition of cycle popping will be deferred to Section 7,
because an understanding of cycle popping is not necessary for a descrip-
tion of the cycle-popping]loop-erased-random-walk algorithms. Here we
merely present the algorithms; in the next section we will describe the
random-stacks picture and explain why cycle popping works.
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Recall from Subsection 1.3 that for a given weighted graph G we can
˜ ˜define two different Markov chains, G and G, where in G we first adjoin

self-loops to make all vertices have the same out-degree, whereas in G
we simply rescale the weights so that every vertex has out-degree 1.

Ž . Ž .RandomTreeWithRoot( ) uses G because F G s F G . Random-r r
˜ ˜Ž . Ž .Tree( ) uses G because F G s F G . Both procedures use a subrou-

tine RandomSuccessor(u) that returns a random successor vertex using
the appropriate Markov chain. Therefore, as before, Markov chain param-
eters written with overbars refer to G, and parameters written with tildes

˜refer to G. Our only hypothesis is that there must exist at least one
directed spanning tree of G with positive weight, with weight defined as in

Ž .Section 5. RandomTreeWithRoot( ) see Fig. 8 maintains a ‘‘current
tree,’’ which initially consists of just the root. As long as there remain
vertices not in the tree, the algorithm does a random walk from one such
vertex, erasing cycles as they are created, until the walk encounters the
current tree. Then the cycle-erased trajectory gets added to the current
tree. It has been known for some time that the path from a vertex to the

Žroot of a random spanning tree is a loop-erased random walk see, e.g.,
w x w x.53 and 13 , but this is the first time that anyone has used this fact to

w xmake a provably efficient algorithm. See 42 for background on loop-erased
random walk.

FIG. 8. Algorithm for obtaining a random spanning tree with prescribed root r via cycle
popping.
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THEOREM 13. With probability 1, RandomTreeWithRoot(r) returns a
random spanning tree rooted at r.

The proofs of this and subsequent theorems in this section are in Section
7.

Suppose that what we want is a random spanning tree without a
prescribed root. It is a pleasant fact that the root of a random spanning
tree is distributed according to p , the steady-state distribution for the˜

˜ Žrandom walk process on the graph G. Aldous has called this ‘‘the most
w x w xoften rediscovered result in probability theory’’ 3 ; the article 12 includes

.a nice proof. Hence, in the case where we have an efficient way of
choosing a vertex from the distribution p , we can reduce the random tree˜
problem to the random tree with root problem. This is indeed the case for
undirected graphs and Eulerian digraphs; that is why there are three

Žversions of the LERW random tree algorithm featured in Table 3 one for
each of the two special cases, via RandomTreeWithRoot( ), plus the
general-purpose procedure that makes use of the somewhat less efficient

.RandomTree( ), described later .
For undirected graphs and Eulerian graphs, p is just the uniform˜

distribution on vertices and p is proportional to the degree of a vertex. In
the case of undirected graphs, because any vertex r may be used to
generate an unrooted spanning tree, it turns out to be more efficient to
pick r to be a random endpoint of a random edge, sample from F , andr
then pick a uniformly random vertex to be the root.

THEOREM 14. The expected number of times that RandomTreeWith-
Root(r) calls the procedure RandomSuccessor( ) is gï en by the mean

Žcommute time between r and a p-random ¨ertex. The running time is linear in
.the number of calls to RandomSuccessor( ).

With E T denoting the expected number of steps for a random walki j
started at i to reach j, the mean commute time between i and j is
E T q E T , and is always dominated by twice the cover time.i j j i

The mean hitting time is the expected time it takes to go from a
p-random vertex to another p-random vertex,

t s p i p j E T .Ž . Ž .Ý i j
i , j

ŽA nice fact, which the proofs will not need, is that for each start vertex i,
Ž . w x .t s Ý p j E T 3 . If G is stochastic, and we have a p-random vertex rj i j

as root, RandomTreeWithRoot( ) makes an average of 2t s 2t calls to
RandomSuccessor( ). For undirected graphs, a random endpoint of a
random edge is p-random, so the variation previously described runs in 2t
time. In these cases it is perhaps surprising that the running time should
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be so small, since the expected time for just the first vertex to reach the
root is t . The expected additional work needed to connect all the remain-
ing vertices to the root is also t .

Ž .For general graphs, RandomTree( ) see Fig. 9 may be used to
Ž .generate a random spanning tree within O t time. As was mentioned at˜

FIG. 9. Algorithm for obtaining a random spanning tree. Chance(«) returns true with
probability « .
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the start of this section, RandomTree( ) effectively does RandomTree-
WithRoot( ) on a larger graph to sample from spanning forests on G,
rejecting those spanning forests that have more than one component while
at the same time adjusting the weight parameter so that the chance of
failure will be lower the next time around. To implement this, the probabil-
ity of a transition from a normal vertex to the added vertex ¨U is set equal
to « , and the other transition probabilities are scaled down by 1 y « . We
think of transitions to ¨U as random extinctions, and we call ¨U itself
‘‘death’’ or ‘‘the death node.’’ Because the death node is a sink, it makes a
natural root from which to grow a spanning tree. The death node is then
deleted from the spanning tree, resulting in a rooted forest in the original
graph. If the forest has one tree, then it is a random tree. Otherwise « is
decreased and another try is made.

THEOREM 15. If Attempt( ) returns a spanning tree, then it is a
random spanning tree. Furthermore, RandomTree( ) calls RandomSuc-
cessor( ) on a¨erage - 22t times, so the expected running time of

Ž .RandomTree( ) is O t .

Note that because the root of a random tree is distributed according to
Ž .p , RandomTree( ) automatically yields an active-setting procedure for˜

randomly sampling from the state space of a generic Markov chain: return
the root of a random spanning tree. We remark further that a small
modification to RandomTree( ) reduces the expected number of calls to

Ž .RandomSuccessor( ) to less than 21t see Section 7 .

7. ANALYSIS OF CYCLE-POPPING ALGORITHMS

The stack model of random walk gives us a way of enriching the state
space of a Markov chain so that its transitions become deterministic rather

Ž .than random. Specifically, we associate with each state or vertex u of the
w xchain an infinite stack S s S , S , S , . . . whose elements are statesu u, 1 u, 2 u, 3

of the Markov chain, such that

w x w xPr S s ¨ s Pr RandomSuccessor(u)s ¨u , i

for all u, i, and such that all the items S are jointly independent of oneu, i
w xanother. To pop an item off the stack S s S , S , S , . . . ,u u, i u, iq1 u, iq2

w xreplace the stack with S , S , S , . . . .u, iq1 u, iq2 u, iq3
To simulate one step of the Markov chain, starting from the vertex u,

Ž .one can simply look at the top item in the stack at u vertex ¨ say , pop
that item from the stack, and move to vertex ¨ . By repeating this process,
one could simulate the entire history of the Markov chain deterministi-
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Žcally. However, for our purposes generation of a random tree with root r
.in the active setting , the connection between the passage of time and the

popping of stacks is less direct. Also, we need to adopt a variant of the
stacks picture in which the vertex r is assigned an empty stack.

In this section we will describe a way to use these ‘‘stacks of random
transitions’’ so as to generate a random tree with a given root r. We will
show that the procedure RandomTreeWithRoot( ) introduced earlier
simulates this process. Then we will reduce the problem of finding a
random unrooted tree to that of finding a random tree with a given root,
and we will analyze the running time of the resulting algorithm.

At any moment, the tops of the stacks define a directed graph G that
Ž .contains edge u, ¨ if and only if the stack at u is nonempty and its top

Ž .first item is ¨ . We call G the ‘‘visible graph’’ determined by the stacks. If
there is a directed cycle in G, then by ‘‘popping’’ that cycle we mean
popping the top item of the stack of each vertex in the cycle. The process
is summarized in Fig. 10.

If this process terminates, the result will be a directed spanning tree
with root r. We will see later that this process terminates with probability 1
if and only if there exists a spanning tree with root r and nonzero weight.
But first let us consider what effect the choices of which cycle to pop might
have.

For convenience, suppose there are an infinite number of colors, and
that stack entry S has color i. Then the directed graph G defined by theu, i
stacks is vertex-colored, and the cycles that get popped are colored. A
cycle may be popped many times, but a colored cycle can only be popped
once. If eventually there are no more cycles, the result is a colored tree.

THEOREM 16. The choices of which cycle to pop next are irrele¨ant: For a
Ž .gï en configuration of the stacks, either 1 the algorithm ne¨er terminates for

Ž .any set of choices, or 2 the algorithm returns some fixed colored tree
independent of the set of choices.

Remark. In the terminology of 1-player combinatorial games, cycle
popping is strongly con¨ergent. Other terms that have been applied to this
phenomenon are confluence, the Jordan]Dedekind property, the diamond

FIG. 10. Cycle-popping procedure.
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w xlemma, and Church]Rosser systems. See 23 for a bibliography of these
terms and for other examples of the phenomenon of strong convergence.

Proof. Consider a colored cycle C that can be popped, i.e., there is a
sequence of colored cycles C , C , C , . . . , C s C that may be popped one1 2 3 k
after the other until C is popped. But suppose that the first colored cycle

˜that the algorithm pops is not C , but instead C. Is it still possible for C to1
˜get popped? If C shares no vertices with C , . . . , C , then the answer is1 k

clearly yes. Otherwise, let C be the first of these cycles that shares ai
˜ ˜vertex with C. If C and C are not equal as cycles, then they share somei

vertex w that has different successor vertices in the two cycles. But
˜because none of C , . . . , C contain w, w has the same color in C and C,1 iy1 i

˜so it must have the same successor vertex in the two cycles. Because C and
˜ ˜C are equal as cycles, and C shares no vertices with C , . . . , C , C andi 1 iy1

˜C are equal as colored cycles. Hence we may pop colored cycles C si
C , C , C , . . . , C , C , . . . , C s C.i 1 2 iy1 iq1 k

If there are infinitely many colored cycles that can be popped, then
there always will be infinitely many colored cycles that can be popped, and
the algorithm never terminates. If there are a finite number of cycles that
can be popped, then every one of them is eventually popped. The number
of these cycles containing vertex u determines u’s color in the resulting
tree.

To summarize, the stacks uniquely define a tree together with a partially
ordered set of cycles layered on top of it. The algorithm peels off these
cycles to find the tree. At any stage, the ‘‘current tree’’ is the set of vertices
¨ that are known not to participate in any cycles by virtue of the fact that

Žthe algorithm has found a non-self-intersecting path via top items in the
.stacks from ¨ to r.

An implementation of the cycle-popping algorithm might start at some
vertex ¨ and do a walk on the stacks so that the next vertex is always given
by the top of the stack of the current vertex. Whenever a vertex is
re-encountered, a cycle was found and it may be popped. If the current

Ž .tree initially consisting of just the root r is encountered, then if we were
to redo the walk from ¨ with the updated stacks, none of the vertices

Ž .encountered would be part of a cycle in the new visible graph. In fact, no
matter which other vertices are popped later on, none of these vertices can
ever again be part of a cycle in the visible graph. These vertices may
therefore be added to the current tree, and the implementation may then
start again at another vertex ¨ X.
RandomTreeWithRoot( ) is just this implementation. RandomSuc-

cessor(u) reads the top of u’s stack and deletes this item while saving it
in the Tree array. The InTree array gives the vertices of the current tree.
ŽTechnically, in order to be a true implementation of cycle popping,
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RandomTreeWithRoot( ) would have to push back onto the stacks
those items S which were eventually found to belong to the loop-erasedu, i
path from ¨ to the current tree; however, if we are not interested in the
stacks per se but we are only interested in the tree they determine, it

.suffices that this information be present in the Tree array.
If the weights on the edges are such that there is a tree with root r and

nonzero weight, then a random walk started at any vertex eventually
reaches r with probability 1. Thus the algorithm halts with probability 1 if
such a tree exists.

Proof of Theorem 13. We have just seen that the procedure terminates
with probability 1 when the set of trees from which we are trying to sample
is nonempty. There are two ways to see that its output is governed by the
proper distribution.

First, define the weight of a cycle to be the product of the weights of its
constituent directed edges. Consider the probability that the stacks define
a tree T and a set CC of colored cycles. By the i.i.d. nature of the stack
entries, and by the fact that CC is compatible with T in exactly one way
Ž .i.e., under exactly one coloring of the directed edges of T , this probabil-
ity factors into a term depending on CC alone and a term depending on T
alone}the product of the cycle weights and the weight of T. Even if we
condition on a particular set of colored cycles being popped, the resulting
tree is distributed according to F .r

Ž .Second Proof of Theorem 13 sketch . Alternatively, we can appeal to
the fact that a loop-erased random walk that starts at vertex ¨ and ends
when it hits vertex r creates a path governed by the same distribution as
the unique directed path from ¨ to r in a random directed tree rooted at
r, with each tree being assigned probability proportional to the product of

w xthe transition probabilities of its arcs. Pemantle 53 proves this fact for
undirected graphs. It is not hard to generalize the proof for strongly
connected directed graphs. A simple continuity argument, in which arc
weights are reduced very slightly and extra arcs of very small weight are
introduced so as to yield strong connectivity, suffices to prove the claim for
general directed graphs. This fact about LERW guarantees that the first
stage of the RandomTreeWithRoot(r), started from a vertex ¨ , gener-
ates a path from ¨ to r with the appropriate distribution.

To see that the same is true for later stages, imagine collapsing all the
vertices on this path to a single vertex, obtaining a new graph GX and a
designated vertex rX. Each spanning tree of GX corresponds to a spanning
tree of G that contains the chosen path from ¨ to r, and the weight of the
latter is equal to the weight of the former times the product of the edge
weights along the path. Hence the distribution on spanning trees of GX

rooted at rX coincides with the conditional distribution on spanning trees
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of G rooted at r in which the chosen path from ¨ to r occurs. Doing a
loop-erased random walk in G until one first encounters this path is
tantamount to doing a loop-erased random walk in GX. Thus the second

Ž .stage of the procedure in which one starts from a new, unvisited vertex
generates a path that is governed by the appropriate conditional distribu-
tion. The same argument applies at subsequent stages.

However, rather than view the LERW]tree-path connection as the basis
of a second proof of Theorem 13, we prefer to view the cycle-popping
proof as a more pleasant, combinatorial proof of the LERW]tree-path
connection.
ŽThe first proof of Theorem 13 also shows that if we sum the weights of

sets of colored cycles that exclude vertex r, the result is the reciprocal of
.the weighted sum of trees rooted at r.

Proof of Theorem 14. What is the expected number of times that
RandomSuccessor(u) is called? Because the order in which cycles are
popped is irrelevant, we may assume that the first trajectory starts at u. It

Ž w x.is a standard result see 3 that the expected number of times the random
Ž .walk started at u visits u before reaching r including the visit at time 0 is

Ž .w xgiven by p u E T q E T , where E T is the expected number of steps tou r r u i j
reach j starting from i. Thus the expected number of calls to RandomSuc-
cessor( ) is

p u E T q E T .Ž . Ž .Ý u r r u
u

If the root r is p-random, then the expected number of calls to
RandomSuccessor( ) is

p u p r E T q E T s 2t .Ž . Ž . Ž .Ý u r r u
u , r

Because the number of calls to RandomSuccessor( ) is at least n y 1,
we get for free,

n y 1
t G .

2

This inequality is not hard to obtain by other methods, but this way we get
a nice combinatorial interpretation of the numerator.

Proof of Theorem 15. Recall that for RandomTree, the original graph
was modified to include a ‘‘death node,’’ where the death node is a sink
and where the transition probability to the death node from any other
node is « . Generate a random spanning tree rooted at the death node. If
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the death node has one child, then the subtree is a random spanning tree
of the original graph. The Attempt( ) procedure aborts if it finds that
the death node will have multiple children, and otherwise it returns a
random spanning tree.

The expected number of steps before the second death is 2r« , which
upper bounds the expected running time of Attempt( ). Suppose that we
start at a p-random location and do the random walk until death. The
node at which the death occurs is a p-random node, and it is the death
node’s first child. Suppose that at this point all future deaths were
suppressed. By the remark following the proof of Theorem 14, the ex-
pected number of additional calls to RandomSuccessor( ) before the
tree is built would be at most 2t . This bound has two consequences. First,
the expected number of steps that a call to Attempt( ) will take is

Žbounded above by 1r« q 2t the time until the first death plus the time to
.construct the rest of the tree . More importantly, the expected number of

suppressed deaths is 2t« . Thus the probability that a second death will
occur is bounded by 2t« . But the probability of aborting is independent of
which vertex Attempt( ) starts at, because the probability of a second
death depends only on whether the death node has more than one child in
the random tree that is generated, and because the distribution on span-
ning trees generated by the loop-erased random walk is independent of the

Ž .starting vertex Theorem 13 . Hence the probability of aborting is at most
Ž .min 1, 2t« .

The expected amount of work done before 1r« becomes bigger than t
Ž . Žis bounded by O t because the partial sum of a geometric series whose

.ratio stays away from 1 is bounded by a constant times its largest term .
After 1r« exceeds t the probability that a call to Attempt( ) results in
Failure decays exponentially. The probability that Attempt( ) gets
called at least i additional times is 2yV Ž i2 ., while the expected amount of
work done the ith time is t 2OŽ i.. Thus the total amount of work done is
Ž . Ž .O t .

ŽIf constant factors do not concern the reader, the proof is done as
.indicated by the parenthesized end-of-proof symbol . The constant factor

of 22 is derived next for the more diligent reader.
Let « be the value of « the jth time RandomTree( ) calls thej

Attempt( ) procedure. The probability that Attempt( ) aborts for
iy1 Ž .the first i y 1 attempts is at most Ł min 1, 2t« , and given that At-js1 j

tempt( ) is being run for the ith time, the expected number of calls to
Ž .RandomSuccessor( ) is at most min 2r« , 1r« q 2t . Hence the ex-i i

pected number of times T that RandomTree( ) calls RandomSucces-
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sor( ) is bounded by

` iy12 1
T F min , q 2t min 1, 2t« .Ž .Ý Ł jž /« « js1i iis1

yj ŽSuppose « s s the algorithm uses s s 2, though we will see shortly thatj
we would get a slight improvement in our bound if we were to use a

.different value . Let k be the smallest j with 2t« F 1, and let k s 2t« ;j k
Ž . ky j1rs - k F 1. Breaking the sum apart and using « s kr2t s we getj

ky1 ` iy14t 1 2t k
iykT F q s q 2tÝ Ý Łky i jykž /k ks sjskis1 isk

ky1 ` iy1T 2 1 1 k
iF q s q 1Ý Ý Łi jž /2t k ks sjs0is1 is0

` i2 1 s
yi Ž iy1.r2 i- q q 1 s kÝ ž /k s y 1 kis0

` `2rk
yi Ž iy3.r2 iy1 yiŽ iy1.r2 is q s k q s k .Ý Ýs y 1 is0 is0

Now because this expression is concave in k , we may evaluate it at
k s 1 and k s 1rs and take the maximum as an upper bound. It should
not be surprising that evaluating at these two values of k yields the same
answer. With s s 2 we get a bound of T - 21.85t .

Suppose that the initial « is chosen to be 1rs raised to a power between
0 and 1 chosen uniformly at random. Then k is 1rs raised to a random
power between 0 and 1, and the expected value of k i is given by

¡ i1 y 1rs
if i / 0,i ~w xExp k s i ln s¢

1 if i s 0.

Then when s s 2.3 we get T - 21t .

8. CAVEATS AND COMMENTS

The algorithms previously described will deliver samples that are free of
initialization bias, provided that the algorithms are properly used. Many of
the relevant strictures apply to all algorithms for random sampling, not just



PROPP AND WILSON212

ours, but because we have gone so far as to call our sampling procedures
‘‘perfect’’ we think it only fair that we alert the reader as to what sort of
uses will ‘‘void the warranty.’’

Most randomized algorithms have the property that the output they
produce is correlated in some fashion with the running time, and most of
our algorithms are not exceptions. In such situations one must exercise
care lest the correlation lead to bias. For instance, suppose one decides to
run an ‘‘exact sampling’’ algorithm as many times as one can within 1 h,
with the proviso that at the end of the hour, one will let the current run

Ž .finish. Suppose further that one then intends to average some quantity f ?
over all samples x that are generated, using the average as an estimate ofi

Ž .the mean value f of the quantity f x as x ranges over x under the
Ž Ž . Ž ..distribution p so that f s Ý p x f x . It is easy to devise examples inx

Ž .which the average of the samples f x , as given by the 1-h samplingi
protocol, fails to be an unbiased estimator of the true mean f.

In this case, one paradoxical-sounding way to remove the bias is to do
less computation; specifically, in generating an ‘‘hour’s worth’’ of samples,
one should commit ahead of time to stopping after exactly 1 h, regardless
of how close the computer is to generating one more sample, except in the
case where the computer is still working on its first sample at the end of
the hour, in which case one should let it run to completion. The curious
fact that averages computed under this scheme are unbiased estimators of

w xthe true mean was first noticed by Glynn and Heidelberger 31 ; we will
not digress to give the proof here, but we mention this phenomenon as an
example of the subtleties that can arise in the study of bias.

Another possible remedy is to devise algorithms whose output and
running time are uncorrelated. The cycle-popping]LERW sampling algo-

Žrithm has a certain interruptibility property a notion introduced by Jim
w x.Fill 27, 28 that allows its runs to be terminated without introducing bias.

Interruptibility follows from the last sentence of the first proof of Theorem
13; even if one conditions on a particular number of Markov state
transitions being generated before the algorithm terminates, the resulting
state is still governed by the desired distribution. It follows that even if one
has a limit on the number of Markov simulation steps that can be
performed, this limitation will not introduce bias.

More realistically, any deadline would be in terms of time rather than
Markov chain simulation steps. But whereas the Glynn]Heidelberger
result is completely robust, and holds whether the resource limitation is
time, Markov chain steps, or any other measure or combination of mea-
sures, the notion of interruptibility is fragile. The algorithm is interruptible
when the limiting resource is Markov chain steps, but if, for instance,
RandomSuccessor(u) takes a different amount of time to return de-
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pending on whether u has degree 2 or degree 3, then the algorithm is not
interruptible with respect to a deadline specified in terms of time.
ŽWe note here that when a computer’s source of randomness is a stream

of random bits, there can be no interruptible sampling algorithm, regard-
less of whether the limiting resource is random bits or computer time, if

.the desired distribution assigns an irrational probability to some event.
A more straightforward way to circumvent the problem of bias is to do

preliminary runs whose outputs are thrown away, purely for the purpose of
seeing how long a typical run of the algorithm takes, and then to commit
to doing some fixed number of runs, in accordance with one’s computa-
tional resources.

Note, however, that neither this scheme nor the Glynn]Heidelberger
scheme is guaranteed to return an answer in bounded time. So if one’s
goal is to generate a single unbiased sample, and if one has some finite
bound on how long one is willing to wait, one cannot count on getting that
sample with 100% certainty. This has led some to initially question
whether our algorithm, which returns unbiased samples with very high
probability but might return no samples at all, is really a clear win over
more traditional methods, which return very slightly biased samples all the
time.

One way to respond to this concern is to ask, How can one know in any
particular Monte Carlo experiment that a sample generated after some
particular number of steps is only slightly biased? To know this, one would
have to know the mixing time, and to know the mixing time, one would
need either to do complicated analyses of the Markov chain at hand or
else to resort to schemes that are designed to diagnose the occurrence of
mixing. But coupling from the past is just as fast as general-purpose

Žschemes for diagnosing mixing indeed, it arose from the study of one such
.scheme , so if one is taking the time to use such procedures to derive

confidence in the smallness of the bias, one might as well use CFTP to
push the bias down to zero.

In most applications it is preferable to obtain an answer in less than
one’s absolute limit of patience, and CFTP can help here. Furthermore, in
most applications one wants to obtain many samples, not just one. Here
one can use the Glynn]Heidelberger scheme; the probability that there is

Ž .no answer by the deadline an upper bound on the deadline-induced bias
quickly becomes negligible. Putting it differently: the point of CFTP is not

y100 Žthat it drives the bias down from 10 to 0 a meaningless assertion at
best, in view of the likelihood that a cosmic ray will strike the computer

.and cause it to make a mistake ; rather, the point is that in situations
where CFTP is workable, it achieves a negligible bias in about as little time
as it takes ordinary Monte Carlo to make nonnegligible progress toward
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Ž .eradication of bias in the sense of variation distance . Finally, it must
never be forgotten that so-called random number generators are merely
deterministic procedures that, in a variety of settings, seem to behave as if
they were random. All of these effects contribute, and none should be
neglected in the design and analysis of a computer experiment. Our goal is
not to remove all error, but to contain and where possible abolish the
initialization bias that inheres in many Monte Carlo algorithms.

OPEN PROBLEMS

The main open question is, how well can one solve the random state and
the random tree problems in the active setting? In particular, is it possible
to solve the random state problem more quickly than the mean hitting

w xtime t ? Aldous gives a lower bound 1 , but it is not clear how these
bounds compare. There are quite a few maximal elements in the partial

Ž .order of algorithms for the random tree problem Table 3 ; an algorithm
Ž . Ž Ž ..that runs in time O t for general graphs rather than time O t would˜

reduce this number to two. Perhaps further progress could be made by
w xcombining random walk and algebraic techniques as done in 54 .

Another issue that could be addressed by future work is the question of
Ž .how well one can do in both the active and passive cases when one wants

to obtain many independent samples. One can always simply iterate the
algorithms described in this article many times, but it seems plausible that

Žthere could be economies of scale when many samples are required see,
w x .e.g., 16 and the paragraph following the proof of Theorem 11 , particu-

Žlarly in the case of the cycle-popping algorithm, which in the context of
.the random state problem gives so much more than is asked for.

Finally, we note that the mathematical principles that makes cycle
popping work may sometimes apply outside the realm of random arbores-
cences. Consider, for instance, the problem of generating a random orien-
tation of an undirected graph in which no vertex is a sink. A natural
procedure for generating such an orientation is to generate an uncon-
strained orientation of the graph and to rerandomize the orientations of
all edges that participate in sinks, iterating until no sinks remain. Adopting
a suitable stack picture, one can check that the order in which sinks are
popped is irrelevant, so that all the steps in the proof of Theorem 13 go
through in this new setting; the procedure generates an unbiased sink-free
orientation. Perhaps cycle popping will turn out to be just one member of
a new class of efficient algorithms for a variety of combinatorial applica-
tions.
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