Stat 376 Lecture schedule

(Spring 2007 schedule)

Course outline:

Week Date Lecture Topics Reading (* required)
1 1/15

1/17

Course overview; review of quadrature, MC integration

Review of finite Markov chain theory

Background reading in Ripley, Robert & Casella
Review papers
2 1/22

1/24

Notions of efficiency in MC integration and MCMC

Convergence diagnostics (discussion)

 

Cowles & Carlin (1996)*
Convergence diagnostics

3 1/29

1/31

Gibbs fields; Ising, Potts, spinglass models; Neural networks

Tempering and annealing

Tutorial notes*

Tempering and annealing

4 2/5

2/7

Monte Carlo optimization and MC likelihood

Parameter estimation in Gibbs measures

Geyer & Thompson (1992)*, Geyer (1991)

Besag (1975)*, Moller (2006), Others

5 2/12

2/14

Estimating marginal likelihoods/normalizing constants

Reversible jump and transdimensional MCMC

Gelman & Meng (1998), Sinharay & Stern (2005), Raftery & Newton (2006)
More on marginal likelihoods

Sisson (2005)*, Green (1995)
More

6 2/19

2/21

Convergence rates and statistical efficiency

Statistical efficiency and algorithmic complexity

Jones & Hobert (2001)*
Roberts & Rosenthal (2004)

Lecture notes
7 2/26

2/28

Markov chains in general state spaces

Langevin diffusion and SDEs, hybrid MC

Roberts & Rosenthal (1997)*
Tierney (1994) (w/ disc)

Roberts & Rosenthal (2001)*
Langevin algorithms

8 3/4

3/6

Dirichlet processes and mixture models

 

Muller & Quintana (2004)*
Dirichlet processes