Jerry Reiter
Professor of Statistical Science
Synthetic
data methods
1. Reiter,
J.
P. (2002) Satisfying disclosure restrictions with synthetic
data
sets. Journal
of Official Statistics, 18, 531-544.
2. Raghunathan, T. E.,
Reiter, J. P., and Rubin, D. B. (2003) Multiple
imputation
for statistical disclosure limitation. Journal
of
Official Statistics, 19, 1-16.
3. Reiter, J.
P. (2003) Inference for partially synthetic, public use
microdata
sets. Survey
Methodology,
29, 181-188.
4. Reiter, J. P.
(2004) New approaches to data dissemination: A glimpse into the
future
(?). Chance, 17:3 (Summer 2004), 12 - 16.
5. Reiter, J. P.
(2004) Simultaneous use of multiple imputation
for missing data and disclosure limitation. Survey Methodology 30, 235 -
242.
6. Reiter, J.
P. (2005) Releasing multiply-imputed, synthetic public use
microdata: An illustration and empirical study. Journal of
the
Royal Statistical Society, Series A, 168, 185 - 205.
7. Reiter,
J.
P. (2005) Significance tests for multi-component estimands
from multiply-imputed, synthetic microdata. Journal
of Statistical Planning and
Inference, 131, 365 - 377.
8. Reiter, J. P. (2005) Using CART to generate partially synthetic public
use microdata. Journal
of Official Statistics, 21, 441 - 462.
9. Mitra, R. and Reiter, J. P. (2006), Adjusting survey
weights when
altering identifying design variables via synthetic data, in Privacy
in Statistical Databases 2006, Lecture
Notes in Computer Science, New York: Springer-Verlag, 177 - 188
10. Reiter,
J. P. and Raghunathan, T. E. (2007), The multiple
adaptations of
multiple imputation, Journal
of the American Statistical Association, 102, 1462 - 1471.
11.
Reiter, J. P. (2008), Selecting the number of imputed
datasets when using
multiple imputation for missing data and disclosure limitation,
Statistics and Probability Letters, 78, 15 - 20.
12.
Drechsler, J. and Reiter, J. P. (2008), Accounting for intruder
uncertainty due to sampling when estimating identification disclosure
risks in partially synthetic data, Privacy in Statistical
Databases (Lecture Notes in Computer Science 5262), ed. J.
Domingo-Ferrer and Y. Saygin, Springer, 227 - 238.
13. Kohnen C. N. and Reiter J. P. (2009), Multiple
imputation for combining confidential data owned by two agencies, Journal
of the Royal Statistical Society, Series A, 172, 511 - 528.
14. Reiter, J. P. (2009), Using multiple imputation to
integrate and disseminate confidential microdata, International Statistical
Review, 77, 179 - 195.
15.
Reiter, J. P. and Mitra, R. (2009), Estimating risks of
identification disclosure in partially synthetic data, Journal of
Privacy and Confidentiality, 1.1, 99 - 110.
16. Drechsler, J. and Reiter, J. P. (2009), Disclosure risk and data utility for partially
synthetic data: An empirical study using the German IAB Establishment Survey,
Journal of Official Statistics, 25, 589 - 603.
17. Reiter, J. P. (2009), Multiple imputation for
disclosure limitation: Future research challenges, Journal of Privacy and
Confidentiality, 1:2, Article 7.
18. Reiter, J. P. and Drechsler, J. (2010), Two stage
multiple imputation to protect confidentiality, Statistica Sinica, 20, 405 - 422.
19. Caiola, G. and Reiter, J. P. (2010), Random forests for generating partially
synthetic, categorical data, Transactions on Data Privacy,
3:1, 27 - 42.
20. Kinney, S. K. and Reiter, J. P. (2010), Tests of multivariate hypotheses when
using multiple imputation for missing data and partial synthesis. Journal of Official
Statistics, 26, 301 - 315.
21. Kinney, S., Reiter, J. P., and Berger, J. O. (2010), Model selection
when multiple imputation is used to protect confidentiality in
public use data, Journal of Privacy and Confidentiality, 2, Article 2.
22. Drechsler, J. and Reiter, J. P. (2010), Sampling with synthesis: A
new approach to releasing public use microdata
samples of census data, Journal of the American Statistical
Association, 105, 1347 - 1357.
23. Reiter, J. P. (2011), Data confidentiality,
Wiley Interdisciplinary Reviews: Computational Statistics, 3, 450
- 456.
24. Kinney, S. K., Reiter, J. P., Reznek, A. P., Miranda, J., Jarmin, R. S., and Abowd, J. M. (2011),
Towards unrestricted public use business microdata: The synthetic Longitudinal Business
Database, International Statistical Review, 79, 363 - 384.
25. Drechsler, J. and Reiter, J. P. (2011), An empirical evaluation of
easily implemented, nonparametric methods for generating synthetic
datasets, Computational Statistics and Data
Analysis, 55, 3232 - 3243.
26. Drechsler, J. and Reiter, J. P. (2012), Combining synthetic data
with subsampling to create public use microdata files for large
scale surveys, Survey Methodology, 38, 73 - 79.
27. Wang, H. and Reiter, J. P. (2012), Multiple imputation for sharing
precise geographies in public use data, Annals
of Applied Statistics, 6, 229 - 252.
28. Reiter, J. P. and Kinney, S. K. (2012), Inferentially valid,
partially synthetic data: Generating from posterior predictive
distributions not necessary, Journal of
Official Statistics, 28, 583 - 590.
29. Burgette, L. F. and Reiter, J. P. (2013), Multiple-shrinkage multinomial probit models
with applications to simulating geographies in
public use data, Bayesian Analysis, 8, 453 - 478.
30. Paiva, T., Chakraborty, A., Reiter, J. P., Gelfand, A. E., (2014),
Imputation of confidential data sets with spatial locations using
disease mapping models, Statistics in Medicine, 33, 1928 - 1945.
31. Kinney, S. K., Reiter, J. P., and Miranda, J. (2014), SynLBD 2.0:
Improving the Synthetic Longitudinal
Business Database, Statistical Journal of the International Association for Official
Statistics, 30, 129 - 135.
32. Hu, J., Reiter, J. P., and Wang, Q. (2014), Disclosure risk
evaluation for fully synthetic data, in Privacy in
Statistical Databases, edited by J. Domingo-Ferrer, Lecture Notes in Computer Science 8744, Heidelberg: Springer, 185 - 199.
33. Reiter, J. P., Wang, Q., and Zhang, B. (2014), Bayesian estimation of disclosure risks in multiply imputed, synthetic data,
Journal of Privacy and Confidentiality, 6:1, Article 2.
34. Quick, H., Holan, S. H., Wikle, C. K., and Reiter,
J. P. (2015), Bayesian marked point process modeling for generating
fully synthetic public use data with point-referenced
geography, Spatial Statistics, 14, 439 - 451.
35. McClure, D. and Reiter, J. P. (2016), Assessing disclosure risks for synthetic data
with arbitrary intruder knowledge, Statistical Journal of the International Association of
Official Statistics, 32, 109 - 126..
36. Wei, L. and Reiter, J. P. (2016), Releasing synthetic magnitude microdata constrained to fixed marginal totals,
Statistical Journal of the International Association of Official
Statistics, 32, 95 - 108.
37. Cronin, K. A., Feuer, R, Liu, B., Reiter, J. P., Yu, M. and Zhu, L. (forthcoming), "Protecting confidentiality in cancer registry data with geographic identifiers,"
American Journal of Epidemiology.
38. Hu, J., Reiter, J. P., and Wang, Q. (forthcoming), "Dirichlet process mixture models for modeling and generating synthetic versions of nested categorical data," Bayesian Analysis.
39. Kim, H. J., Reiter, J. P., and Karr, A. F. (forthcoming), "Simultaneous edit-imputation and disclosure limitation
for business establishment data," Journal of Applied Statistics.
Assessing
disclosure risk and data utility
1. Reiter,
J. P. (2005)
Estimating risks of
identification disclosure for
microdata. Journal
of the American Statistical Association, 100, 1103 - 1113.
2. Karr,
A. F., Kohnen, C. N., Oganian, A., Reiter, J. P. and Sanil,
A. P. (2006), A framework for evaluating the utility of data
altered to protect confidentiality, The
American Statistician, 60, 224 - 232.
3.
Woo, M., Reiter, J. P., Oganian, A., Karr, A. F. (2009),
Global measures
of data utility for microdata masked for disclosure limitation, Journal
of Privacy and Confidentiality, 1.1, 111 - 124.
4. Reiter J.P., Oganian A., and Karr AF (2009),
Verification servers: enabling analysts to assess the quality of
inferences from public use data. Computational Statistics and Data
Analysis, 53, 1475 - 1482.
5. Reiter, J. P. and Kinney, S. K. (2011), Sharing confidential
data for research purposes: A primer [invited commentary],
Epidemiology, 22, 632 - 635.
6. Reiter, J. P. (2012), Statistical approaches to protecting confidentiality for microdata and
their effects on the quality of statistical inferences, Public Opinion Quarterly, 76, 163 - 181.
7. McClure, D. and Reiter, J. P. (2012), Towards providing automated feedback on the quality of
inferences from synthetic datasets, Journal of
Privacy and Confidentiality, 4:1, Article 8.
8. McClure, D. and Reiter, J. P. (2012), Differential privacy and statistical disclosure risk measures: An
illustration with binary synthetic data," Transactions on Data Privacy, 5:3, 535 - 552.
9. Manrique-Vallier, D. and Reiter, J. P. (2012), Estimating
identification disclosure risk using mixed membership models,
Journal of the American Statistical Association, 107, 1385 - 1394.
10. Karr, A. F. and Reiter, J. P. (2014), Using statistics to protect
privacy, in Privacy, Big Data, and the Public Good:
Frameworks for Engagement, edited by J. Lane, V. Stodden,
S. Bender, and H. Nissenbaum, Cambridge University Press, 276 - 295.
11. Manrique-Vallier, D. and Reiter, J. P. (2014), Bayesian estimation
of discrete multivariate latent structure models with structural zeros, Journal of Computational and Graphical Statistics, 23, 1061 - 1079.
12. Kim, H. J., Karr, A. F., and Reiter, J. P. (2015), Statistical disclosure limitation in the presence of edit rules,
Journal of Official Statistics, 31, 121 - 138.
13. Chen, Y., Machanavajjhala, A., Reiter, J. P., and Barrientos,
A. F. (forthcoming), "Differentially private regression diagnostics," IEEE International Conference on Data Mining 2016 Proceedings.
Remote access and secure
computation
1. Reiter, J.
P. (2003) Model diagnostics for remote-access
regression servers. Statistics and
Computing, 13, 371-380.
2. Karr,
A. F., Lin, X., Sanil, A.
P. and Reiter, J. P. (2004), Analysis of integrated data
without data
integration, Chance, 17:3 (Summer 2004), 27
- 30.
3. Sanil,
A. P., Karr, A.
F., Lin, X., and Reiter, J. P. (2004), Privacy
preserving regression modelling via distributed
computation, Proceedings
of the Tenth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
677-682 (peer reviewed).
4. Gomatam, S.,
Karr, A. F., Reiter, J. P., Sanil, A. (2005) Data
dissemintation
and disclosure limitation in a world without microdata: A risk-utility
framework for remote access servers. Statistical
Science, 20, 163 - 177.
5. Karr, A.
F., Lin, X., Sanil, A. P., and
Reiter, J. P. (2005), Secure regressions on distributed
databases, Journal
of Computational and
Graphical Statistics, 14, 263 - 279.
6. Karr,
A. F., Feng, J., Lin, X., Sanil, A. P., Young, S. S., and Reiter, J. P.
(2005), Secure analysis of distributed chemical databases without data
integration, Journal of Computer-Aided Molecular Design, 19, 739 - 747.
7. Reiter,
J. P. and Kohnen, C. N. (2005) Categorical data
regression diagnostics for remote servers. Journal
of Statistical Computation and
Simulation, 75, 889 - 903.
8. Karr,
A. F., Lin, X., Sanil, A. P., and Reiter, J. P.
(2006), Secure statistical analysis of distributed
databases, in Statistical Methods in Counterterrorism:
Game Theory, Modeling, Syndromic Surveillance, and Biometric
Authentication. Edited by A. Wilson, G. Wilson, and D. Olwell. New
York: Springer, 237 - 262.
9.
Ghosh, J., Reiter, J.P. and Karr, A. F. (2007), Secure
computation with
horizontally partitioned data using adaptive regression
splines, Computational
Statistics and Data Analysis, 51, 5813 - 5820.
10. Karr, A. F., Fulp, W. J., Vera, F.,
Young, S. S., Lin, X., and Reiter,
J. P. (2007), Secure, privacy-preserving analysis of
distributed
databases, Technometrics,
49, 335 - 345.
11. Karr,
A. F., Lin, X., Reiter, J. P. and Sanil, A. P.
(2009), Privacy preserving analysis of vertically partitioned
data using secure matrix protocols,
Journal of Official Statistics, 25, 125 - 138.
12. Ghosh, J. and Reiter, J. P. (2013), Secure Bayesian
model averaging for horizontally partitioned data, Statistics and
Computing, 23, 311 - 322.
Missing data methods
1. Reiter, J. P.,
Raghunathan, T. E., and Kinney, S. (2006),
The importance of modeling the sampling design in multiple
imputation
for missing data, Survey
Methodology, 32.2, 143 - 150.
2. Reiter, J. P.
(2007), Small-sample degrees
of
freedom for multi-component
significance tests with multiple imputation for missing data, Biometrika, 94, 502 - 508.
3. Reiter, J.
P.
(2008), Multiple imputation when records used for imputation
are not used or disseminated for analysis, Biometrika, 95, 933 - 946.
4. Kinney, S. K. and Reiter, J. P. (2009), Inferences for
two stage multiple imputation for nonresponse, Journal of
Statistical Theory and Practice, 3, 307 - 318.
5. Marchenko, Y. V. and Reiter, J. P. (2009), Improved
degrees of freedom for multivariate significance tests obtained
from multiply-imputed, small sample data, The
Stata Journal, 9, 388 - 397.
6. Burgette, L. and Reiter, J. P. (2010), Multiple imputation via
sequential regression trees, American Journal of
Epidemiology, 172, 1070 - 1076.
7. Zhou, X. and Reiter, J. P. (2010), A note on Bayesian inference
after multiple imputation, The American Statistician, 64, 159 - 163.
8. Si, Y. and Reiter, J. P. (2011), A comparison of posterior
simulation and inference by combining rules for multiple
imputation, Journal of Statistical Theory and Practice, 5,
335 - 347.
9. Mitra, R. and Reiter, J. P. (2011), Estimating propensity scores with
missing covariate data using general location mixture models,
Statistics in Medicine, 30, 627 - 641.
10. Reiter, J. P. (2012), Bayesian finite population imputation for data
fusion, Statistica Sinica, 22, 795 - 811.
11. Burgette L. F. and Reiter, J. P. (2012), Nonparametric Bayesian multiple imputation for missing
data due to mid-study switching of measurement methods, Journal of the American
Statistical Association, 107, 439 - 449.
12. Deng, Y., Hillygus, D. S., Reiter, J. P., Si, Y., and Zheng,
S. (2013), Handling attrition in longitudinal studies: The case for
refreshment samples, Statistical Science, 22, 238 - 256.
13. Si, Y. and Reiter, J. P. (2013), Nonparametric Bayesian multiple
imputation for incomplete categorical variables in large-scale
assessment surveys,
Journal of Educational and
Behavioral Statistics, 38, 499 - 521.
14. Hu, J., Mitra, R., and Reiter, J. P. (2013), Are
Independent Draws Necessary for Multiple Imputation?, The
American Statistician, 67, 143 - 149.
15. Kim, H. J., Reiter, J. P., Wang, Q., Cox, L. H., and Karr,
A. F. (2014) Multiple imputation of missing or faulty values under linear
constraints, Journal of Business and Economic Statistics, 32, 375 - 386.
16. Manrique-Vallier, D. and Reiter, J. P. (2014), Bayesian multiple imputation for large scale categorical data with structural zeros,"
Survey Methodology, 40, 125 - 134.
17. Si, Y., Reiter, J. P., and Hillygus, D. S. (2015), Semi-parametric selection models
for potentially non-ignorable attrition in panel studies with refreshment samples, Political
Analysis, 23, 92 - 112.
18. Carrig, M. M., Manrique-Vallier, D., Ranby, K., Reiter, J. P., and Hoyle, R. (2015),
A multiple imputation-based method for the retrospective harmonization of data sets, Multivariate Behavioral Research, 50, 383 - 397.
19. Schifeling, T., Cheng, C. Hillygus, S., and Reiter, J. P., (2015), Accounting for
nonignorable unit nonresponse and attrition in panel studies with refreshment samples, Journal of Survey Statistics and Methodology, 3, 265 - 295.
20. Kim, H. J., Cox, L., Karr, A. F., Reiter, J. P. and Wang, Q. (2015), Simultaneous
edit-imputation for continuous microdata, Journal of the American Statistical Association, 110, 987 - 999.
21. Si, Y., Reiter, J. P., and Hillygus, D. S. (2016),
Bayesian latent pattern mixture models for handling attrition in panel
studies with refreshment samples, Annals of Applied Statistics,
10, 118 - 143.
22. Mitra, R. and Reiter, J. P. (2016), A comparison of two methods of
estimating propensity scores after multiple imputation,
Statistical Methods in Medical Research, 25, 188 - 204.
23. Murray, J. S. and Reiter, J. P. (forthcoming) Multiple imputation of missing categorical
and continuous values via Bayesian mixture models with local
dependence, Journal of the American Statistical Association.
24. De Yoreo, M., Reiter, J. P., and Hillygus, D. S. (forthcoming), "Nonparametric Bayesian models with focused clustering for mixed ordinal and nominal data," Bayesian Analysis.
25. Manrique-Vallier, D. and Reiter, J. P. (forthcoming), "Bayesian simultaneous
edit and imputation for multivariate categorical data,"
Journal of the American Statistical Association.
26. Sadinle, M. and Reiter, J. P. (forthcoming), "Itemwise conditionally independent nonresponse
modeling for incomplete multivariate data," Biometrika.
27. White, T. K., Reiter, J. P. and Petrin, A. (forthcoming) "Imputation in U. S. manufacturing data and its implications for productivity dispersion," Review of Economics and Statistics.
28. Akande, O., Li, F., and Reiter, J. P. (forthcoming), "An empirical
comparison of multiple imputation methods for categorical data,"
The American Statistician.
Analysis of complex data and causal inference
1. Reiter, J.
P. (2000),
Using statistics to determine causal
relationships, The American Mathematical Monthly, 107,
24-32.
2. Reiter, J.
P. (2000),
Borrowing strength when explicit data pooling is prohibited, Journal of Official Statistics, 16,
296-319.
3. Hill, J. L., Reiter, J.
P., Zanutto, E.
(2004), A comparison of
experimental
and observational data analyses, In Applied Bayesian Modeling and Causal
Inference from Incomplete-Data Perspectives, edited
by A. Gelman and X. Meng. New York: Wiley, 49 - 60.
4. Reiter,
J.,
Zanutto, E., and
Hunter, L. (2005),, Analytical
modeling in complex surveys of work practices, Industrial
Labor Relations Review, 59, 82-100.
5. Hill,
J. L. and Reiter, J. P. (2006), Interval estimation of treatment
effects when using propensity score matching, Statistics in Medicine, 25:13,
2230 - 2256.
6. Woo, M. J., Reiter, J. P., and Karr, A. F. (2008), Estimation of propensity
scores using generalized additive models, Statistics in
Medicine, 27, 3806 - 3816.
7. Burgette, L., Reiter, J. P., and Miranda, M. L. (2011), Exploratory
quantile regression with many covariates: An application to adverse birth
outcomes, Epidemiology, 22, 859 - 866.
8. Schwartz, S., Li, F., and Reiter, J. P. (2012), Sensitivity
analysis for unmeasured confounding in principal stratification,
Statistics in Medicine, 31, 949 - 962.
9. Burgette, L. F. and Reiter, J. P. (2012), Modeling adverse birth
outcomes via confirmatory factor quantile regressions,
Biometrics, 68, 92 - 100.
10. Siddique, J., Reiter, J. P., Brincks, A., Gibbons,
R., Crespi, C., and Brown, C. H. (2015), Multiple imputation for harmonizing non-commensurate measures in
individual participant data meta-analysis, Statistics in Medicine, 34, 3399 - 3414.
11. Schifeling, T. and Reiter, J. P. (2016), Incorporating
marginal prior information in latent class models, Bayesian
Analysis, 11, 499 - 518.
12. Fosdick, B. K., De Yoreo, M. and Reiter, J. P. (forthcoming), Categorical data fusion using
auxiliary data, Annals of Applied Statistics.
Data analysis
1. Gu, B., Olejar, K., Reiter,
J. P., Thor, K. B., and Dolber, P. C. (2004), Inhibition of
bladder activity by 5HT1 serotonin receptor antagonists
in cats with chronic spinal cord injury, Journal of Pharmacology and Experimental
Therapeutics, 310:3, 1266 -
1272.
2. Gu, B., Reiter, J. P.,
Schwinn, D. A., Smith, M. P., Korstanje, C.,
Thor, K. B., and Dolber, P. C. (2004), Effects of
alpha1-adrenergic receptor
subtype selective antagonists on lower urinary tract function in rats
with bladder outlet obstruction, Journal
of Urology, 172, 758 -
762.
3. Reiter, J. P. (2004),
Should teams walk or pitch to Barry
Bonds? Baseball Research
Journal, 32, 63-69. (Citations and news
articles)
4. Orr, S. T., Blazer, D. G., James, S. A., and Reiter, J. P. (2007),
Depressive symptoms and indicators of maternal health status during
pregnancy, Journal of Women's
Health, 16, 535 - 542.
5. Orr, S. T., Blazer, D. G., James, S. A., and Reiter, J. P. (2007),
Maternal prenatal pregnancy-related anxiety and spontaneous preterm birth in
Baltimore, Maryland,Psychosomatic
Medicine, 69, 566 - 570.
6. Dolber, P. C., Gu, B., Zhang, X., Fraser, M. O., Thor,
K. B., and Reiter, J. P. (2007) Activation of the external urethral
sphincter central pattern
generator by a 5-HT1A serotonin receptor agonist in rats with chronic
spinal cord injury, American Journal of
Physiology: Regulatory, Integrative, and Comparative Physiology, 292, R1699 -
R1706.
7. Gu, B., Thor, K. B., Reiter, J. P., and Dolber, P. C. (2007) Effect of 5HHT-1
serotonin receptor agonists on noxiously stimulated micturition in cats
with chronic spinal cord injury, Journal of Urology, 177, 2381 -
2385.
8. Kwiek, N. C. Halpin, M. J., Reiter,
J. P., Hoeffler, L. A., and Schwartz-Bloom, R. D. (2007),
Pharmacology
in the high school classroom,Science,
317
(September 28, 2007), 1871 - 1872 (with supplemental
material).
9. Orr, S. T., James, S. A., and Reiter, J. P. (2008), Unintended pregnancy and prenatal behaviors among urban, black
women in Baltimore, Maryland: The Baltimore preterm birth study, Annals of Epidemiology, 18, 545 - 551.
10. Montgomery, J., Cooper, A., Reiter, J. P, and Guan,
S. (2008), A comparison of respondents and non-respondents on dimensions of
political activity, International Journal of Public Opinion Research, 20, 494 - 506.
11. Reiter J. P. (2008), Statistics in sports: Current and future research trends, STAtOR 9.2, 4 - 7.
12. Miranda, M. L., Kim, D., Reiter, J. P., Overstreet, M. A.,
Maxson, P. (2009), Environmental contributors to the achievement
gap, NeuroToxicology, 30, 1019 - 1024.
13. Schwartz-Bloom, R. D., Halpin, M. J., and Reiter, J. P. (2011),
Teaching high school chemistry in the context of pharmacology
helps both teachers and students learn, Journal
of Chemical Education, 88, 744 - 750.
15. Petrin, A., Reiter, J. P., and White, T. K. (2011),
The impact of plant-level resource reallocations and technical
progress on U.S. macroeconomic growth, Review of Economic
Dynamics, 14, 3 - 26. Also published as NBER Working Paper
No. 16700.
16. Orr, S. T., Reiter, J. P., James, S. A., and Orr, C. A. (2012), Maternal health prior to pregnancy
and preterm birth among urban, low income black women in Baltimore: The
Baltimore Preterm Birth Study. Ethnicity and Disease, 22, 85
- 89.
17. Godin, E. A., Kwiek, N., Sikes, S. S., Halpin, M. J.,
Weinbaum, C. A., Burgette, L. F., Reiter, J. P., and Schwartz-Bloom, R. D. (2014), Alcohol pharmacology education partnership: Using chemistry and
biology concepts to educate high school students about
alcohol, Journal of Chemical Education, 91, 165 - 172.
18. Grochowski, C. O., Cartmill, M., Reiter, J., Spaulding, J.,
Haviland, J., Valea, F., Thibodeau, P. L., McCorison, S., and
Halperin, E. C. (2014), "Anxiety in first year medical students taking
gross anatomy," Clinical Anatomy, 27, 835 - 838.